Synlett 2015; 26(03): 313-317
DOI: 10.1055/s-0034-1380003
cluster
© Georg Thieme Verlag Stuttgart · New York

Reduction of Nitroarenes Using CO and H2O in the Presence of a Nanostructured Cobalt Oxide/Nitrogen-Doped Graphene (NGr) Catalyst

Felix A. Westerhaus
,
Iván Sorribes
,
Gerrit Wienhöfer
,
Kathrin Junge
,
Matthias Beller*
Further Information

Publication History

Received: 13 November 2014

Accepted after revision: 13 January 2015

Publication Date:
26 January 2015 (online)


Abstract

The most common route to anilines is based on the reduction of the corresponding nitroarenes. In general, hydrogen is preferred as reducing agent and numerous catalytic systems are known to achieve such transformations. Besides, the use of CO/H2O as hydrogen source offers interesting possibilities for reductions. Carbon monoxide is a cheap and abundant chemical used on industrial scale for a variety of transformations. Although the reduction of nitroarenes with CO/H2O is known in the presence of noble-metal catalysts, earth-abundant inexpensive catalysts showing high selectivity have not yet been developed. In this respect, herein we present the use of a heterogeneous cobalt ­oxide catalyst (Co3O4/NGr@C), which is modified by nitrogen-doped graphene layers. Using this non-noble metal catalyst nitroarenes are reduced in high yields and good chemoselectivities.

Supporting Information

 
  • References and Notes

  • 1 Both authors contributed equally to this work.
  • 2 Ono N In The Nitro Group in Organic Synthesis . Wiley-VCH; Weinheim: 2001
    • 3a Lawerencem SA In Amines: Synthesis, Properties and Applications . Cambridge University; Cambridge: 2004
    • 3b Wittcoff HA, Reuben BG, Plotkin JS In Industrial Organic Chemicals . Wiley-Interscience; New York: 2004. 2nd ed.
    • 3c Ricci A In Modern Aminations Methods . Wiley-VCH; Weinheim: 2007
    • 4a Downing RS, Kunkeler PJ, van Bekkum H. Catal. Today 1997; 37: 121
    • 4b Vogt PF, Gerulis JJ. Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000
    • 5a Onopchenko A, Sabourin ET, Selwitz CM. J. Org. Chem. 1979; 44: 1233
    • 5b Savoia D, Trombini C, Umanironchi A, Verardo G. J. Chem. Soc., Chem. Commun. 1981; 540
    • 5c Cao SK, Xu SL, Xu SG. Polym. Adv. Technol. 1999; 10: 43
    • 5d Boix C, Poliakoff N. J. Chem. Soc., Perkin Trans. 1 1999; 1487
    • 5e Blaser H.-U, Siegrist U, Steiner H In Aromatic Nitro Compounds: Fine Chemicals Through Heterogeneous Catalysis . Wiley-VCH; Weinheim: 2001
    • 5f Ichikawa S, Tada M, Iwasawea Y, Ikariya T. Chem. Commun. 2005; 924
    • 5g Cardenas-Lizana F, Gomez-Quero S, Keane MA. ChemSusChem 2008; 1: 215
    • 5h Liu L, Qiao B, Chen Z, Zhang J, Deng Y. Chem. Commun. 2009; 653
    • 5i Cardenas-Lizana F, Gomez-Quero S, Hugon A, Delannoy L, Louis C, Keane MA. J. Catal. 2009; 262: 235
    • 5j Blaser H.-U, Steiner H, Studer M. ChemCatChem 2009; 1: 210
    • 5k Joshi R, Chudasama U. Ind. Eng. Chem. Res. 2010; 49: 2543
    • 6a Corma A, Serna P. Science 2006; 313: 332
    • 6b Corma A, Serna P, Concepcion P, Calvino JJ. J. Am. Chem. Soc. 2008; 130: 8748
    • 7a Westerhaus FA, Jagadeesh RV, Wienhöfer G, Pohl M.-M, Radnik J, Surkus A.-E, Rabeah J, Junge K, Junge H, Nielsen M, Brückner A, Beller M. Nat. Chem. 2013; 5: 537
    • 7b Jagadeesh RV, Surkus A.-E, Junge H, Pohl M.-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M. Science 2013; 342: 1073
    • 8a Miyata T, Kondo K, Murai S, Hirashima T, Sonoda N. Angew. Chem., Int. Ed. Engl. 1980; 19: 1008
    • 8b Shvo Y, Czarkie D. J. Organomet. Chem. 1989; 368: 357
    • 8c Nomura K, Ishino M, Hazama M. J. Mol. Catal. 1991; 66: L19
    • 8d Nomura K. J. Mol. Catal. 1992; 73: L1
    • 8e Nomura K, Ishino M, Hazama M. J. Mol. Catal. 1993; 78: 273
    • 8f Kaneda K, Kuwahara H, Imanaka T. J. Mol. Catal. 1994; 88: L267
    • 8g Macho V, Vojcek L, Schmidtova M, Harustiak M. J. Mol. Catal. 1994; 88: 177
    • 8h Nomura K. J. Mol. Catal. A: Chem. 1995; 95: 203
    • 8i Tafesh AM, Weiguny J. Chem. Rev. 1996; 96: 2035
    • 8j Ragaini F, Cenini S. J. Mol. Catal. A: Chem. 1996; 105: 145
    • 8k Nomura K. J. Mol. Catal. A: Chem. 1998; 130: 1
    • 8l Linares C, Mediavilla M, Pardey AJ, Longo C, Baricelli P, Moya SA. Bol. Soc. Chil. Quím. 1998; 43: 55
    • 8m Ragaini F, Cenini S, Gasperini M. J. Mol. Catal. A: Chem. 2001; 174: 51
    • 8n Liu XZ, Lu SW. Chem. Lett. 2003; 32: 1142
    • 8o Fernandez C, Lujano E, Macias U, Marcano J, Baricelli PJ, Longo C, Moya SA, Solorzano MG, Ortega MC, Pardey AJ. Catal. Lett. 2004; 95: 143
    • 8p Liu XZ, Lu SW. J. Mol. Catal. A: Chem. 2004; 212: 127
    • 8q Liu X.-z, Lu S.-w. J. Mol. Catal. A: Chem. 2009; 300: 36
    • 8r Nishiyama Y, Ikeda S, Nishida H, Umeda R. Bull. Chem. Soc. Jpn. 2010; 83: 816
    • 9a Mdleleni MM, Rinker RG, Ford PC. J. Mol. Catal. 1994; 89: 283
    • 9b Pardey AJ, Fernandez M, Longo C, Lujano E, Baricelli P, Guerrero J, Moya SA. React. Kinet. Catal. Lett. 1998; 65: 315
    • 9c Pardey AJ, Fernandez M, Canestrari M, Baricelli P, Lujano E, Longo C, Sartori R, Moya SA. React. Kinet. Catal. Lett. 1999; 67: 325
    • 9d Pardey AJ, FernandezFernandez M, Alvarez J, Urbina C, Moronta D, Leon V, Longo C, Baricelli PJ, Moya SA. J. Mol. Catal. A: Chem. 2000; 164: 225
    • 9e Pardey AJ, Fernandez M, Rivas AB, Ortega MC, Urbina C, Moronta D, Longo C, Mediavilla M, Baricelli PJ, Moya SA. Inorg. Chim. Acta 2002; 329 22
    • 9f Mdleleni MA, Rinker RG, Ford PC. J. Mol. Catal. A: Chem. 2003; 204: 125
    • 9g Farkas ME, Rodriguez E, Longo C, Monasterios M, Ortega MC, Rivas AB, Pardey AJ, Lopez R, Moya SA. J. Chil. Chem. Soc. 2006; 51: 829
    • 9h He L, Wang L.-C, Sun H, Ni J, Cao Y, He H.-Y, Ean K.-N. Angew. Chem. Int. Ed. 2009; 48: 9538
    • 9i Vigano M, Ragaini F, Buonomenna MG, Lariccia R, Caselli A, Gallo E, Cenini S, Jansen JC, Drioli E. ChemCatChem 2010; 2: 1150
    • 9j Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Lett. 2010; 39: 223
    • 9k Huang J, Yu L, He L, Liu Y.-M, Cao Y, Fan K.-N. Green Chem. 2011; 13: 2672
  • 10 For an example of the reduction of nitrobenzene catalyzed by an immobilized Cu catalyst under CO atmosphere, see: Yanez JE, Rivas AB, Alvarez J, Ortega MC, Pardey AJ, Longo C, Feazell RP. J. Coord. Chem. 2006; 59: 1719
  • 11 Stemmler T, Westerhaus FA, Surkus A.-E, Pohl M.-M, Junge K, Beller M. Green Chem. 2014; 16: 4535
  • 12 Jagadeesh RV, Junge H, Pohl M.-M, Radnik J, Brückner A, Beller M. J. Am. Chem. Soc. 2013; 135: 10776
  • 13 Banerjee D, Jagadeesh RV, Junge K, Pohl M.-M, Radnik J, Brückner A, Beller M. Angew. Chem. Int. Ed. 2014; 53: 4359
  • 14 General Procedure for the Reduction of Nitroarenes to AnilinesInto a reaction glass vial fitted with a magnetic stirring bar and a septum cap penetrated with a syringe needle was added the Co3O4/NGr@C-catalyst (2 mol%, 3 wt% Co-phenanthroline on carbon, 20 mg) followed by the nitro arene (0.5 mmol), the internal standard (hexadecane, 100 μL), THF (2 mL), and H2O (200 μL). The reaction vial was then placed into a 300 mL autoclave. The autoclave was flushed twice with nitrogen, pressurized with CO at 30 bar pressure. Finally, the autoclave was used at 60 bar by adding nitrogen and placed into an aluminium block, which was preheated at 125 °C. After 24 h the autoclave was placed into a water bath and cooled to r.t. Finally, the remaining gas was discharged, and the samples were removed from the autoclave, diluted with EtOAc and analyzed by GC. To determine the yield of isolated products, the general procedure was scaled up by the factor of two, and no internal standard was added. After the reaction was completed, the catalyst was filtered off, and the filtrate was concentrated and purified by silica gel column chromatography (n-heptane–EtOAc mixtures) to give the corresponding anilines.
  • 15 Isolated products of Table 1 have been fully characterized by 1H NMR and 13C NMR spectroscopy, and analyses are in agreement with already published data (see Supporting Information).3-IodoanilineIsolated yield 91%. 1H NMR (400 MHz, CDCl3): δ = 7.17–7.07 (m, 2 H), 6.91 (t, J = 7.9 Hz, 1 H), 6.73–6.64 (m, 1 H), 3.67 (br, 2 H). 13C NMR (101 MHz, CDCl3): δ = 147.73, 130.78, 127.46, 123.75, 114.30, 94.97. MS (EI): m/z (rel. int.) = 219.
  • 16 Ali MF, El AliB. M, Speight JG In Handbook of Industrial Chemistry – Organic Chemicals . McGraw-Hill; New York: 2005
  • 17 Marson CM. Chem. Soc. Rev. 2011; 40: 5514