RSS-Feed abonnieren
DOI: 10.1055/s-0034-1379994
Palladium-Catalyzed Oxidative Heck Coupling of Vinyl Pyridines with Aryl Boronic Acids
Publikationsverlauf
Received: 12. Dezember 2014
Accepted after revision: 05. Januar 2015
Publikationsdatum:
10. Februar 2015 (online)

Abstract
An efficient methodology has been developed for the oxidative cross-coupling of vinyl pyridine with various boronic acids catalyzed by palladium. In this reaction, vinyl pyridines reacted with various aryl boronic acids in the presence of 10 mol% palladium(II) trifluoroacetate, 10 mol% 1,10- phenanthroline, and 1 equivalent silver(I) oxide, to give the corresponding aryl vinyl pyridine products as a single stereoisomer, with N,N-dimethylformamide as the solvent and under 1 atmosphere of oxygen gas. The aryl vinyl pyridine products were obtained in moderate to good yields after 24 hours. A mechanism for the reaction is proposed.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379994.
- Supporting Information
-
References
- 1a Negishi E. Handbook of Organopalladium Chemistry . Wiley and Sons; New York: 2002
- 1b Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
- 1c Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 1d McDonald RI, Liu GS, Stahl SS. Chem. Rev. 2011; 111: 2981
- 1e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
MissingFormLabel
- 1f Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1g Egle MB, Gianluigi B, Michela M, Silvia S. Chem. Rev. 2007; 107: 5318
- 1h Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
- 2a Tasker SZ, Gutierrez AC, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 1858
- 2b Yang ZG, Zhou JR. J. Am. Chem. Soc. 2012; 134: 11833
- 2c Qin LN, Ren XF, Lu YP, Li YX, Zhou JR. Angew. Chem. Int. Ed. 2012; 51: 5915
- 2d Shirakawa E, Zhang XJ, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 4671
- 2e Oestreich M. The Mizoroki–Heck Reaction . Wiley and Sons; New York: 2009. and references therein
- 2f Alonso F, Beletskaya IP, Yus M. Tetrahedron 2005; 61: 11771
- 2g Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
MissingFormLabel
- 3a Qureshi Z, Weinstabl H, Suhartono M, Liu HQ, Thesmar P, Lautens M. Eur. J. Org. Chem. 2014; 4053
- 3b Iwama Y, Okano K, Sugimoto K, Tokuyama H. Chem. Eur. J. 2013; 19: 9325
- 3c Stang EM, White MC. Nature Chem. 2009; 1: 547
- 3d Godula K, Sames D. Science 2006; 312: 67
- 3e Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
- 3f Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
MissingFormLabel
- 4 Dieck HA, Heck RF. J. Org. Chem. 1975; 40: 1083
- 5 Cho CS, Uemura S. J. Organomet. Chem. 1994; 465: 85
- 6 Du XL, Suguro M, Hirabayashi K, Mori A, Nishikata T, Hagiwara N, Kawata K, Okeda T, Wang HF, Fugami K, Kosugi M. Org. Lett. 2001; 3: 3313
- 7a Odell LR In Comprehensive Organic Synthesis . Molander GA, Knochel P. Elsevier; Oxford: 2014. 2nd ed., Vol. 7 492-537
- 7b Su Y, Jiao N. Org. Lett. 2009; 11: 2980
- 7c Xiong D.-C, Zhang L.-H, Ye X.-S. Org. Lett. 2009; 11: 1709
- 7d Delcamp JH, Brucks AP, White MC. J. Am. Chem. Soc. 2008; 130: 11270
- 7e Ruan J, Li X, Saidi O, Xiao J. J. Am. Chem. Soc. 2007; 130: 2424
- 8a Yoo KS, O’Neill J, Sakaguchi S, Giles R, Lee JH, Jung KW. J. Org. Chem. 2010; 75: 95
- 8b Yoo KS, Park CP, Yoon CH, Sakaguchi S, O’Neill J, Jung KW. Org. Lett. 2007; 9: 3933
- 8c Yoo KS, Yoon CH, Mishra RK, Jung YC, Yi SW, Jung KW. J. Am. Chem. Soc. 2006; 128: 16384
- 8d Yoon CH, Yoo KS, Yi SW, Mishra RK, Jung KW. Org. Lett. 2004; 6: 4037
- 8e Jung YC, Mishra RK, Yoon CH, Jung KW. Org. Lett. 2003; 5: 2231
- 9a Fardost A, Lindh J, Sjöberg PJ. R, Larhed M. Adv. Synth. Catal. 2014; 356: 870
- 9b Yahiaoui S, Fardost A, Trejos A, Larhed M. J. Org. Chem. 2011; 76: 2433
- 9c Odell LR, Lindh J, Gustafsson T, Larhed M. Eur. J. Org. Chem. 2010; 2270
- 9d Trejos A, Fardost A, Yahiaoui S, Larhed M. Chem. Commun. 2009; 48: 7587
- 9e Lindh J, Enquist P.-A, Pilotti Å, Nilsson P, Larhed M. J. Org. Chem. 2007; 72: 7957
- 9f Andappan MM. S, Nilsson P, Larhed M. Chem. Commun. 2004; 218
- 9g Andappan MM. S, Nilsson P, von Schenck H, Larhed M. J. Org. Chem. 2004; 69: 5212
- 10a Civicos JF, Alonso DA, Najera C. Adv. Synth. Catal. 2011; 353: 1683
- 10b Navarro O, Marion N, Mei J, Nolan SP. Chem. Eur. J. 2006; 12: 5142
- 11a Kim M, Kwak J, Chang S. Angew. Chem. Int. Ed. 2009; 48: 8935
MissingFormLabel
- 11b Berthiol F, Feuerstein M, Doucet H, Santelli M. Tetrahedron Lett. 2002; 43: 5625
- 12a Lee D.-H, Taher A, Hossain S, Jin M.-J. Org. Lett. 2011; 13: 5540
- 12b Chandrasekhar V, Narayanan RS. Tetrahedron Lett. 2011; 52: 3527
- 13 Yamanori T, Nagata K, Ishizuka N, Hayashi K. US2004/242615A1, 2004
- 14 Weibel J.-M, Blanc A, Pale P. Chem. Rev. 2008; 108: 3149 ; and references therein
MissingFormLabel
- 15 Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
- 16 Preparation of 3; General Procedure: Pd(TFA)2 (0.02 mmol, 10 mol%), 1,10-phenanthroline (0.02 mmol, 10 mol%), Ag2O (0.2 mmol, 1 equiv), phenyl boronic acid (0.3 mmol, 1.5 equiv), and 2-vinyl pyridine (0.2 mmol, 1 equiv) were added to a 10 mL round-bottom flask containing DMF (1 mL). The mixture was stirred for 24 h at 80 °C under 1 atmosphere of O2. After cooling to r.t., the mixture was diluted with EtOAc (5 mL) and filtered through a plug of Celite. The filtrate was washed with sat. NH4Cl (2 × 5 mL), and brine (5 mL). The organic layer was dried with anhydrous MgSO4 and filtered. The crude product was obtained by evaporating the organic solvent under reduced pressure. The desired product was isolated by column chromatography (Et2O–hexane, 3:7). Data for 3d: 1H NMR (400 MHz, CDCl3, 295 K): δ = 8.51 (d, J = 4.0 Hz, 1 H), 7.55 (td, J = 8.0, 1.6 Hz, 1 H), 7.53 (d, J = 16.4 Hz, 1 H, CH=CH), 7.44 (d, J = 8.4 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 2 H), 7.31 (td, J = 8.4, 2.4 Hz, 1 H), 7.06 (d, J = 16 Hz, 1 H, CH=CH), 7.04 (td, J = 6.8 Hz, 1 H), 1.25 (s, 9 H). 13C{1H} NMR (100 MHz, CDCl3, 295 K): δ = 155.86, 151.58, 149.62, 136.49, 133.88, 132.57, 127.20, 126.88, 125.68, 121.91, 121.86, 34.71, 31.28.
For recent reviews, see: