Synlett 2015; 26(06): 791-796
DOI: 10.1055/s-0034-1379994
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Oxidative Heck Coupling of Vinyl Pyridines with Aryl Boronic Acids

Shanshan Chen*
Department of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei 230036, P. R. of China   Email: chenshanshan@ahau.edu.cn
,
Xiuli Zhang
Department of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei 230036, P. R. of China   Email: chenshanshan@ahau.edu.cn
,
Mingjie Chu
Department of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei 230036, P. R. of China   Email: chenshanshan@ahau.edu.cn
,
Xiaoping Gan
Department of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei 230036, P. R. of China   Email: chenshanshan@ahau.edu.cn
,
Xianhai Lv
Department of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei 230036, P. R. of China   Email: chenshanshan@ahau.edu.cn
,
Jie Yu
Department of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei 230036, P. R. of China   Email: chenshanshan@ahau.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 12 December 2014

Accepted after revision: 05 January 2015

Publication Date:
10 February 2015 (online)


Abstract

An efficient methodology has been developed for the oxidative cross-coupling of vinyl pyridine with various boronic acids catalyzed by palladium. In this reaction, vinyl pyridines reacted with various aryl boronic acids in the presence of 10 mol% palladium(II) trifluoroacetate, 10 mol% 1,10- phenanthroline, and 1 equivalent silver(I) oxide, to give the corresponding aryl vinyl pyridine products as a single stereoisomer, with N,N-dimethylformamide as the solvent and under 1 atmosphere of oxygen gas. The aryl vinyl pyridine products were obtained in moderate to good yields after 24 hours. A mechanism for the reaction is proposed.

Supporting Information

 
  • References

    • 1a Negishi E. Handbook of Organopalladium Chemistry . Wiley and Sons; New York: 2002

    • For recent reviews, see:
    • 1b Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
    • 1c Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 1d McDonald RI, Liu GS, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 1e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1f Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1g Egle MB, Gianluigi B, Michela M, Silvia S. Chem. Rev. 2007; 107: 5318
    • 1h Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 2a Tasker SZ, Gutierrez AC, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 1858
    • 2b Yang ZG, Zhou JR. J. Am. Chem. Soc. 2012; 134: 11833
    • 2c Qin LN, Ren XF, Lu YP, Li YX, Zhou JR. Angew. Chem. Int. Ed. 2012; 51: 5915
    • 2d Shirakawa E, Zhang XJ, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 4671
    • 2e Oestreich M. The Mizoroki–Heck Reaction . Wiley and Sons; New York: 2009. and references therein
    • 2f Alonso F, Beletskaya IP, Yus M. Tetrahedron 2005; 61: 11771
    • 2g Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 3a Qureshi Z, Weinstabl H, Suhartono M, Liu HQ, Thesmar P, Lautens M. Eur. J. Org. Chem. 2014; 4053
    • 3b Iwama Y, Okano K, Sugimoto K, Tokuyama H. Chem. Eur. J. 2013; 19: 9325
    • 3c Stang EM, White MC. Nature Chem. 2009; 1: 547
    • 3d Godula K, Sames D. Science 2006; 312: 67
    • 3e Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 3f Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
  • 4 Dieck HA, Heck RF. J. Org. Chem. 1975; 40: 1083
  • 5 Cho CS, Uemura S. J. Organomet. Chem. 1994; 465: 85
  • 6 Du XL, Suguro M, Hirabayashi K, Mori A, Nishikata T, Hagiwara N, Kawata K, Okeda T, Wang HF, Fugami K, Kosugi M. Org. Lett. 2001; 3: 3313
    • 7a Odell LR In Comprehensive Organic Synthesis . Molander GA, Knochel P. Elsevier; Oxford: 2014. 2nd ed., Vol. 7 492-537
    • 7b Su Y, Jiao N. Org. Lett. 2009; 11: 2980
    • 7c Xiong D.-C, Zhang L.-H, Ye X.-S. Org. Lett. 2009; 11: 1709
    • 7d Delcamp JH, Brucks AP, White MC. J. Am. Chem. Soc. 2008; 130: 11270
    • 7e Ruan J, Li X, Saidi O, Xiao J. J. Am. Chem. Soc. 2007; 130: 2424
    • 8a Yoo KS, O’Neill J, Sakaguchi S, Giles R, Lee JH, Jung KW. J. Org. Chem. 2010; 75: 95
    • 8b Yoo KS, Park CP, Yoon CH, Sakaguchi S, O’Neill J, Jung KW. Org. Lett. 2007; 9: 3933
    • 8c Yoo KS, Yoon CH, Mishra RK, Jung YC, Yi SW, Jung KW. J. Am. Chem. Soc. 2006; 128: 16384
    • 8d Yoon CH, Yoo KS, Yi SW, Mishra RK, Jung KW. Org. Lett. 2004; 6: 4037
    • 8e Jung YC, Mishra RK, Yoon CH, Jung KW. Org. Lett. 2003; 5: 2231
    • 9a Fardost A, Lindh J, Sjöberg PJ. R, Larhed M. Adv. Synth. Catal. 2014; 356: 870
    • 9b Yahiaoui S, Fardost A, Trejos A, Larhed M. J. Org. Chem. 2011; 76: 2433
    • 9c Odell LR, Lindh J, Gustafsson T, Larhed M. Eur. J. Org. Chem. 2010; 2270
    • 9d Trejos A, Fardost A, Yahiaoui S, Larhed M. Chem. Commun. 2009; 48: 7587
    • 9e Lindh J, Enquist P.-A, Pilotti Å, Nilsson P, Larhed M. J. Org. Chem. 2007; 72: 7957
    • 9f Andappan MM. S, Nilsson P, Larhed M. Chem. Commun. 2004; 218
    • 9g Andappan MM. S, Nilsson P, von Schenck H, Larhed M. J. Org. Chem. 2004; 69: 5212
    • 10a Civicos JF, Alonso DA, Najera C. Adv. Synth. Catal. 2011; 353: 1683
    • 10b Navarro O, Marion N, Mei J, Nolan SP. Chem. Eur. J. 2006; 12: 5142
    • 11a Kim M, Kwak J, Chang S. Angew. Chem. Int. Ed. 2009; 48: 8935
    • 11b Berthiol F, Feuerstein M, Doucet H, Santelli M. Tetrahedron Lett. 2002; 43: 5625
    • 12a Lee D.-H, Taher A, Hossain S, Jin M.-J. Org. Lett. 2011; 13: 5540
    • 12b Chandrasekhar V, Narayanan RS. Tetrahedron Lett. 2011; 52: 3527
  • 13 Yamanori T, Nagata K, Ishizuka N, Hayashi K. US2004/242615A1, 2004
  • 14 Weibel J.-M, Blanc A, Pale P. Chem. Rev. 2008; 108: 3149 ; and references therein
  • 15 Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
  • 16 Preparation of 3; General Procedure: Pd(TFA)2 (0.02 mmol, 10 mol%), 1,10-phenanthroline (0.02 mmol, 10 mol%), Ag2O (0.2 mmol, 1 equiv), phenyl boronic acid (0.3 mmol, 1.5 equiv), and 2-vinyl pyridine (0.2 mmol, 1 equiv) were added to a 10 mL round-bottom flask containing DMF (1 mL). The mixture was stirred for 24 h at 80 °C under 1 atmosphere of O2. After cooling to r.t., the mixture was diluted with EtOAc (5 mL) and filtered through a plug of Celite. The filtrate was washed with sat. NH4Cl (2 × 5 mL), and brine (5 mL). The organic layer was dried with anhydrous MgSO4 and filtered. The crude product was obtained by evaporating the organic solvent under reduced pressure. The desired product was isolated by column chromatography (Et2O–hexane, 3:7). Data for 3d: 1H NMR (400 MHz, CDCl3, 295 K): δ = 8.51 (d, J = 4.0 Hz, 1 H), 7.55 (td, J = 8.0, 1.6 Hz, 1 H), 7.53 (d, J = 16.4 Hz, 1 H, CH=CH), 7.44 (d, J = 8.4 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 2 H), 7.31 (td, J = 8.4, 2.4 Hz, 1 H), 7.06 (d, J = 16 Hz, 1 H, CH=CH), 7.04 (td, J = 6.8 Hz, 1 H), 1.25 (s, 9 H). 13C{1H} NMR (100 MHz, CDCl3, 295 K): δ = 155.86, 151.58, 149.62, 136.49, 133.88, 132.57, 127.20, 126.88, 125.68, 121.91, 121.86, 34.71, 31.28.