Synthesis 2015; 47(07): 969-975
DOI: 10.1055/s-0034-1379972
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of β-Trifluoromethylthio- and β-Trifluoromethylseleno-α,β-unsaturated Ketones through Copper-Mediated Trifluoromethylthio(seleno)lation

Chuanqi Hou
Department of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Xiaoxi Lin
Department of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Yangjie Huang
Department of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Zhirong Chen*
Department of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Zhiqiang Weng*
Department of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 29 September 2012

Accepted after revision: 11 December 2014

Publication Date:
22 January 2015 (online)


Abstract

An efficient and convenient synthetic methodology has been developed with which to construct β-trifluoromethylthio- and seleno-α,β-unsaturated ketones through copper-mediated trifluoromethyl­thio(seleno)lation of β-bromo α,β-unsaturated ketones. The corresponding ketone products were isolated in moderate to good yields and were efficiently converted into valuable alcohols.

Supporting Information

 
  • References

    • 1a Becker A. Inventory of Industrial Fluoro-Biochemicals. Eyrolles; Paris: 1996
    • 1b Langlois BR, Billard T, Large S, Roques N. Fluorinated Bio-active Compounds . Fluorine Technology; Cheshire: 1999. paper 24
    • 1c Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
    • 2a Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
    • 2b Wang H, Vicic DA. Synlett 2013; 24: 1887
    • 2c He W, Weng Z. Prog. Chem. (Chinese) 2013; 25: 1071
    • 2d Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 2e Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
    • 3a Pooput C, Dolbier WR, Médebielle M. J. Org. Chem. 2006; 71: 3564
    • 3b Blond G, Billard T, Langlois BR. Tetrahedron Lett. 2001; 42: 2473
    • 3c Roques N. J. Fluorine Chem. 2001; 107: 311
    • 3d Billard T, Langlois BR. Tetrahedron Lett. 1996; 37: 6865
    • 4a Teruo U, Sumi I. Tetrahedron Lett. 1990; 31: 3579
    • 4b Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
    • 4c Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 5a Wakselman C, Tordeux M. J. Org. Chem. 1985; 50: 4047
    • 5b Wakselman C, Tordeux M, Clavel J.-L, Langlois B. J. Chem. Soc., Chem. Commun. 1991; 993
    • 5c Quiclet-Sire B, Saicic RN, Zard SZ. Tetrahedron Lett. 1996; 37: 9057
    • 5d Billard T, Roques N, Langlois BR. J. Org. Chem. 1999; 64: 3813
    • 5e Pooput C, Medebielle M, Dolbier WR. Org. Lett. 2004; 6: 301
    • 5f Harsányi A, Dorkó É, Csapó Á, Bakó T, Peltz C, Rábai J. J. Fluorine Chem. 2011; 132: 1241
    • 6a Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
    • 6b Chen C, Xie Y, Chu L, Wang R.-W, Zhang X, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
    • 6c Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
    • 6d Zhang C.-P, Vicic DA. Chem. Asian J. 2012; 7: 1756
    • 6e Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 6f Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J. Am. Chem. Soc. 2013; 135: 8782
    • 6g Rueping M, Tolstoluzhsky N, Nikolaienko P. Chem. Eur. J. 2013; 19: 14043
    • 6h Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
    • 6i Hu F, Shao X, Zhu D, Lu L, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 6105
    • 6j Danoun G, Bayarmagnai B, Gruenberg MF, Goossen LJ. Chem. Sci. 2014; 5: 1312
    • 7a Ferry A, Billard T, Langlois BR, Bacqué E. Angew. Chem. Int. Ed. 2009; 48: 8551
    • 7b Yang Y, Jiang X, Qing F.-L. J. Org. Chem. 2012; 77: 7538
    • 7c Ferry A, Billard T, Bacqué E, Langlois BR. J. Fluorine Chem. 2012; 134: 160
    • 7d Baert F, Colomb J, Billard T. Angew. Chem. Int. Ed. 2012; 51: 10382
    • 7e Alazet S, Zimmer L, Billard T. Angew. Chem. Int. Ed. 2013; 52: 10814
    • 7f Bootwicha T, Liu X, Pluta R, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2013; 52: 12856
    • 7g Wang X, Yang T, Cheng X, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
    • 7h Pluta R, Nikolaienko P, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 1650
    • 7i Vinogradova EV, Müller P, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 3125
    • 7j Xu C, Ma B, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
  • 8 Piers E, Grierson JR, Lau CK, Nagakura I. Can. J. Chem. 1982; 60: 210
    • 9a Byeon SR, Park H, Kim H, Hong J. Org. Lett. 2011; 13: 5816
    • 9b Korenaga T, Maenishi R, Hayashi K, Sakai T. Adv. Synth. Catal. 2010; 352: 3247
    • 9c Jun C.-H, Moon CW, Kim Y.-M, Lee H, Lee JH. Tetrahedron Lett. 2002; 43: 4233
    • 10a Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
    • 10b Kong D, Jiang Z, Xin S, Bai Z, Yuan Y, Weng Z. Tetrahedron 2013; 69: 6046
    • 10c Tan J, Zhang G, Ou Y, Yuan Y, Weng Z. Chin. J. Chem. 2013; 31: 921
    • 11a Chen C, Ouyang L, Lin Q, Liu Y, Hou C, Yuan Y, Weng Z. Chem. Eur. J. 2014; 20: 657
    • 11b Chen C, Hou C, Wang Y, Hor TS. A, Weng Z. Org. Lett. 2013; 16: 524
  • 12 Zhu P, He X, Chen X, You Y, Yuan Y, Weng Z. Tetrahedron 2014; 70: 672
  • 13 Dang L, Lin Z, Marder TB. Organometallics 2008; 27: 4443
    • 14a Piers E, Nagakura I. J. Org. Chem. 1975; 40: 2694
    • 14b Piers E, Cheng KF, Nagakura I. Can. J. Chem. 1982; 60: 1256
  • 15 Kerr WJ, Pearson CM, Thurston GJ. Org. Biomol. Chem. 2006; 4: 47
  • 16 Armerego WL. F, Chai CL. L. Purification of Laboratory Chemicals . 6th ed. Elsevier; Amsterdam: 2009