Synlett, Inhaltsverzeichnis Synlett 2015; 26(03): 355-358DOI: 10.1055/s-0034-1379735 letter © Georg Thieme Verlag Stuttgart · New YorkProline-Catalyzed α-Aminooxylation of β-Amino Aldehydes: Access to Enantiomerically Pure syn- and anti-3-Amino-3-aryl-1,2-alkanediols V. Venkataramasubramanian Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411008, India eMail: a.sudalai@ncl.res.in , I. N. Chaithanya Kiran Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411008, India eMail: a.sudalai@ncl.res.in , Arumugam Sudalai* Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411008, India eMail: a.sudalai@ncl.res.in› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A new synthetic method for enantioselective synthesis of syn or anti-3-amino-3-aryl-1,2-alkanediols via proline catalyzed α-aminooxylation of β-amino aldehydes are described. This methodology is successfully applied to a concise and protecting group-free asymmetric synthesis of (–)-cytoxazone, (+)-epi-cytoxazone and formal synthesis of N-thiolated 2-oxazolidinone. Key words Key wordsamino aldehydes - asymmetric synthesis - catalysis - diastereoselectivity - enantioselectivity - natural product Volltext Referenzen References and Notes 1a Rohokale SR, Dhavale DD. Beilstein J. Org. Chem. 2014; 10: 667 1b Busscher GF, Rutjes FP. J. T, van Delft FL. Chem. Rev. 2005; 105: 775 1c Umezawa W. Adv. Carbohydr. Chem. Biochem. 1974; 30: 111 1d Rinehart KL, Stroshane RM. J. Antibiot. 1976; 29: 319 1e Daniels PJ. K. Kirk-Othmer Encyclopedia of Chemical Technology . Vol. 2. John Wiley and Sons; Hoboken: 1978: 819 2a Bonini C, Chiummiento L, Bonis M, Funicello M, Lupattelli P, Suanno G, Berti G, Campaner P. Tetrahedron 2005; 61: 6580 2b Kempf D, Sham H. Curr. Pharm. Des. 1996; 2: 225 3 Peterson MA, Polt R. J. Org. Chem. 1993; 58: 4309 ; and references cited therein 4a Overhand M, Hecht SM. J. Org. Chem. 1994; 59: 4721 4b Veith U, Schwardt O, Jäger V. Synlett 1996; 1181 4c Zanardi F, Battistini L, Nespi M, Rassu G, Spanu P, Cornia M, Casiraghi G. Tetrahedron: Asymmetry 1996; 7: 1169 4d Hümmer W, Dubois E, Gracza T, Jäger V. Synthesis 1997; 634 4e DuBois J, Tomooka CS, Hong J, Carreira EM. J. Am. Chem. Soc. 1997; 119: 3179 5 Meunier N, Veith U, Jäger V. Chem. Commun. 1996; 331 6a Chandra Babu K, Buchi Reddy R, Mukkanti K, Madhusudhan G, Srinivasulu P. J. Chem. Pharm. Res. 2012; 4: 4988 6b Pedro M, Elena C, Santiago F, Francisco LM, Tomas T. Tetrahedron 1998; 54: 12301 6c Konradi AW, Pedersen SF. J. Org. Chem. 1990; 55: 4506 6d Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1998; 120: 11798 6e Concellon JM, Suarez JR, Granda SG, Diaz MR. Org. Lett. 2005; 7: 247 6f Canas M, Poch M, Verdaguer X, Moyano A, Pencis MA, Riera A. Tetrahedron Lett. 1991; 32: 6931 6g José M, Concello N, Suárez JR, Solar V, Llavona R. J. Org. Chem. 2005; 70: 10348 6h Bickley JF, Roberts SM, Runhui Y, Skidmore J, Smith CB. Tetrahedron 2003; 59: 5731 6i Bunnage ME, Chernega AN, Davies SG, Goodwin CJ. J. Chem. Soc., Perkin Trans. 1 1994; 2373 6j Masanori S, Mori K. Eur. J. Org. Chem. 1999; 2965 6k Dziedzic P, Schyman P, Kullberg M, Córdova A. Chem. Eur. J. 2009; 15: 4044 7a Kumar BS, Venkataramasubramanian V, Sudalai A. Org. Lett. 2012; 14: 2468 7b Kotkar SP, Chavan VB, Sudalai A. Org. Lett. 2007; 9: 1001 7c Kotkar SP, Sudalai A. Tetrahedron Lett. 2006; 47: 6813 7d Rawat V, Chouthaiwale PV, Chavan VB, Suryavanshi G, Sudalai A. Tetrahedron Lett. 2010; 51: 6565 8 Yang JW, Chandler C, Stadler M, Kampen D, List B. Nature (London, U.K.) 2008; 452: 453 9a Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293 9b Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247 9c Hayashi Y, Yamaguchi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2003; 43: 1112 9d Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808 9e Cordova A, Sunden H, Bogevig A, Johansson M, Himo F. Chem. Eur. J. 2004; 10: 3673 9f Momiyama N, Yamamoto H. Chem. Commun. 2005; 3514 10a Kakeya H, Morishita M, Koshino H, Morita T, Kobayashi K, Osada H. J. Org. Chem. 1999; 64: 1052 10b Seki M, Mori K. Eur. J. Org. Chem. 1999; 2965 10c Carter PH, La-Porte JR, Scherle PA, Decicco CP. Bioorg. Med. Chem. Lett. 2003; 13: 1237 10d Milicevic S, Matovic R, Saicic RN. Tetrahedron Lett. 2004; 45: 955 10e Sugiyama S, Arai S, Ishii K. Tetrahedron: Asymmetry 2004; 15: 3149 10f Davies SG, Hughes DG, Nicholson RL, Smith AD, Wright AJ. Org. Biomol. Chem. 2004; 2: 1549 10g Kim IS, Kim JD, Ryu CB, Zee OP, Jung YH. Tetrahedron 2006; 62: 9349 10h Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K. Chem. Asian J. 2007; 2: 1150 11 Hamersak Z, Sepac D, Ziher D, Sunjic V. Synthesis 2003; 375 12a Mishra RK, Revell KD, Coates CM, Turos E, Dickeyb S, Limb DV. Bioorg. Med. Chem. 2006; 16: 2081 12b Steven RW, Hisao I, Marvin JM. Tetrahedron Lett. 1985; 26: 3891 13 Reddy RS, Chouthaiwale PV, Suryavanshi G, Chavan VB, Sudalai A. Chem. Commun. 2010; 46: 5012 14 Carswell EL, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2006; 45: 7230 15 Mishra RK, Coates CM, Revell KD, Turos E. Org. Lett. 2007; 9: 575 16 Kim S.-G, Park T.-H. Tetrahedron: Asymmetry 2008; 19: 1626 17 As we have obtained the major diastereomer of >99% with enantiopurity of 93%, we believe that the stereoinduction of newly generated chiral center (C–O bond) is fully controlled by the type of proline we used, irrespective of the stereocenter in the substrate (Figure 2). 18 General Experimental Procedure for the Preparation of 3-Amino-1,2-alkane Diols 1a–f To a stirred precooled (–10 °C) MeCN (25 mL) solution of β-amino aldehydes 6a–f (17 mmol) and nitrosobenzene (13.6 mmol) was added l-proline (0.039 g, 20 mol%). The reaction mixture was allowed to stir at the same temperature for 20 h followed by the addition of MeOH (10 mL) and NaBH4 (25 mmol) to the reaction mixture, which was stirred for further 10 min. After addition of phosphate buffer, the resulting mixture was extracted with EtOAc (3 × 30 mL), the combined organic phases were dried over anhydrous Na2SO4 and concentrated to give the crude aminooxy alcohol, which was directly taken up for the next step without purification. To a MeOH (25 mL) solution of the above crude aminooxy alcohol was added Cu(OAc)2·H2O (2.6 mmol) at 25 °C, and the reaction mixture was allowed to stir for 10 h at that temperature. After addition of phosphate buffer, the resulting mixture was extracted with CHCl3 (3 × 30 mL), and the combined organic phases were dried over anhydrous Na2SO4 and concentrated to give the crude product, which was then purified by column chromatography over silica gel using PE–EtOAc to give 3-amino-1,2-alkane diols 1a–f. 19 (2R,3R)-3-(tert-Butoxycarbonylamino)-3-(p-tolyl)-1,2-propanediol (1c) Yield 63%; colorless solid recrystallized from CHCl3; mp 126–129 °C. [α]D 25 –57.87 (c 2.7, CHCl3); 95% ee from chiral HPLC analysis [Chiracel AD-H, n-hexane–i-PrOH (90:10), 0.5 mL min–1]: t R = 21.6 min (97%) and 27.1 min (2%). IR (CHCl3): νmax = 727, 780, 815, 884, 1049, 1101, 1163, 1247, 1287, 1365, 1391, 1506, 1683, 2929, 2976, 3366 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.42 (s, 9 H), 2.34 (s, 3 H), 2.82 (br s, 1 H), 3.31 (br s, 1 H), 3.51–3.62 (m, 2 H), 3.78 (br s, 1 H), 4.59–4.66 (m, 1 H), 5.25 (d, J = 6.7 Hz, 1 H), 7.09–7.22 (m, 4 H). 13C NMR (50 MHz, CDCl3 + DMSO-d 6): δ = 20.5, 27.9, 56.4, 62.8, 73.2, 78.4, 127.0, 128.3, 135.9, 136.4, 155.0. ESI-HRMS: m/z calcd for C15H23NO4 [M + Na]+: 304.1519, found: 304.1514. Anal. Calcd for C15H23NO4: C, 64.04; H, 8.24; N, 4.98. Found: C, 63.91; H, 8.12; N, 4.93. 20 (2R,3R)-3-(tert-Butoxycarbonylamino)-3-(o-chlorophenyl)-1,2-propanediol (1d) Yield 55%; colorless gum; [α]D 25 –7.50 (c 0.32, CHCl3); 99% ee from chiral HPLC analysis [Chiracel AS-H, n-hexane–i-PrOH (95:05), 0.5 mL min–1]: t R = 25.9 min (0.5%) and 28.8 min (99.5%). IR (CHCl3): νmax = 702, 704, 1036, 1164, 1264, 1367, 1393, 1498, 1694, 2928, 3420 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.43 (s, 9 H), 2.97 (br s, 1 H), 3.39 (br s, 1 H), 3.64–3.79 (m, 2 H), 3.98–3.99 (m, 1 H), 5.15–5.17 (m, 1 H), 5.55 (br s, 1 H), 7.19–7.25 (m, 2 H), 7.27–7.42 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 28.3, 54.1, 62.8, 72.2, 80.4, 127.1, 129.0, 130.1, 133.8, 136.6, 156.3. ESI-HRMS: m/z calcd for C14H20ClNO4 [M + Na]+: 324.0973; found: 324.0970. Anal. Calcd for C14H20ClNO4: C, 55.72; H, 6.68; N, 4.64. Found: C, 55.56; H, 6.48; N, 4.47. 21 (2R,3R)-3-(tert-Butoxycarbonylamino)-3-(1-naphthyl)-1,2-propanediol (1e) Yield 62%; colorless gum; [α]D 25 –13.00 (c 0.2, CHCl3); 92% ee from chiral HPLC analysis [Chiracel AD-H, n-hexane–i-PrOH (90:10), 0.5 mL min–1]: t R = 12.55 min (3.92%) and 21.64 min (96.1%). IR (CHCl3): νmax = 774, 1019, 1038, 1121, 1159, 1351, 1408, 1499, 1687, 2921, 2991, 3382 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.44 (s, 9 H), 2.66 (br s, 1 H), 3.48 (br s, 1 H), 3.76–3.86 (dd, J = 12.0, 29.3 Hz, 2 H), 4.10–4.12 (m, 1 H), 5.14 (d, J = 8.1 Hz, 1 H), 5.53–5.57 (m, 1 H), 7.48–7.57 (m, 4 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.87 (d, J = 7.8 Hz, 1 H), 8.06 (d, J = 8.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 28.3, 51.7, 62.9, 72.9, 80.6, 122.9, 123.9, 125.3, 125.9, 126.8, 128.8, 129.1, 131.8, 134.2, 134.7, 156.8. ESI-HRMS: m/z calcd for C18H23NO4 [M + Na]+: 340.1519; found: 340.1515. Anal. Calcd for C18H23NO4: C, 68.12; H, 7.30; N, 4.41. Found: C, 67.93; H, 7.12; N, 4.31. 22 (2R,3S)-3-(tert-Butoxycarbonylamino)-3-(furfuryl)-1,2-propanediol (1f) Yield 58%; colorless gum; [α]D 25 –44.32 (c 0.46, CHCl3); 90% ee. IR (CHCl3): νmax = 784, 1089, 1066, 1178, 1263, 1398, 1469, 1508, 1699, 2824, 2841, 3384, 3421 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.44 (s, 9 H), 2.95 (br s, 2 H), 3.67 (s, 2 H), 3.81 (br s, 1 H), 4.76–4.79 (m, 1 H), 5.29 (br s, 1 H), 6.32–6.34 (m, 2 H), 7.37 (br s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 28.3, 50.7, 62.8, 73.1, 80.6, 108.1, 110.5, 142.2, 151.7, 156.2. ESI-HRMS: m/z calcd for C12H19NO5 [M + Na]+: 280.1169; found: 280.1177. Anal. Calcd for C12H19NO5: C, 56.02; H, 7.44; N, 5.44. Found: C, 56.07; H, 7.36; N, 5.32. Zusatzmaterial Zusatzmaterial Supporting Information