Synlett 2014; 25(19): 2743-2747
DOI: 10.1055/s-0034-1379484
cluster
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed S-Arylation of Benzothiazole with Aryl Iodides under Aqueous Medium: Facile Synthesis of Aryl(2-aminoaryl) Sulfides

Hang Wai Lee
State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Fax: +85223649932   Email: kf.yung@polyu.edu.hk   Email: fuk-yee.kwong@polyu.edu.hk
,
Ka Fu Yung*
State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Fax: +85223649932   Email: kf.yung@polyu.edu.hk   Email: fuk-yee.kwong@polyu.edu.hk
,
Fuk Yee Kwong*
State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Fax: +85223649932   Email: kf.yung@polyu.edu.hk   Email: fuk-yee.kwong@polyu.edu.hk
› Author Affiliations
Further Information

Publication History

Received: 13 September 2014
Accepted after revision: 28 September 2014

Publication Date:
21 October 2014 (online)


Abstract

A simple route for facile access of aryl(2-aminoaryl) sulfide was reported. With the aid of iron(III) chloride catalyst and diamine ligand, benzothiazole was efficiently S-arylated with various aryl iodides (19 examples) in water under air atmosphere. This operationally simple protocol provides aryl(2-aminoaryl) sulfides in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Nguyen B, Marsh KC, Okasinski GF, von Geldern TW, Ormes M, Fowler K, Gallatin M. J. Med. Chem. 2000; 43: 4025
    • 1b Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, Von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 1c Sarmiento GP, Vitale RG, Afeltra J, Moltrasio GY, Moglioni AG. Eur. J. Med. Chem. 2011; 46: 101
    • 1d Prinz H, Chamasmani B, Vogel K, Böhm KJ, Aicher B, Gerlach M, Günther EG, Amon P, Ivanov I, Müller K. J. Med. Chem. 2011; 54: 4247
  • 2 Cuny GD, Hauske JR, Hoemann MZ. WO 2000056707, 2000
    • 3a Betebenner DA, DeGoey DA, Maring CJ, Krueger AC, Iwasaki N, Rockway TW, Cooper CS, Anderson DD, Donner PL, Green BE, Kempf DJ, Liu D, McDaniel KF, Madigan DL, Motter CE, Pratt JK, Shanley JP, Tufano MD, Wagner R, Zhang R, Molla A, Mo H, Pilot-Matias TJ, Masse SV. L, Carrick RJ, He W, Lu L, Grampovnik DJ. WO 2007076034, 2007
    • 3b Betebenner DA, DeGoey DaA, Maring CJ, Krueger AC, Iwasaki N, Rockway TW, Cooper CS, Anderson DD, Donner PL, Green BE, Kempf DJ, Liu D, McDaniel KF, Madigan DL, Motter CE, Pratt JK, Shanley JP, Tufano MD, Wagner R, Zhang R, Molla A, Mo H, Pilot-Matias TJ, Masse SV. L, Carrick RJ, He W, Lu L, Grampovnik DJ. US 7910595, 2011
  • 4 Dong G, Sheng C, Wang S, Miao Z, Yao J, Zhang W. J. Med. Chem. 2010; 53: 7521
    • 5a Parhi AK, Wang JL, Oya S, Choi S.-R, Kung M.-P, Kung HF. J. Med. Chem. 2007; 50: 6673
    • 5b Wang JL. D, Eric C, Oya S, Kung HF. Nucl. Med. Biol. 2010; 37: 577
  • 6 Takeuchi H, Hirayama S, Mitani M, Koyama K. J. Chem. Soc., Perkin Trans. 1 1988; 521
    • 7a Kaczmarek L, Badowska-Roslonek K, Stolarczyk E, Szele-Jewski W. WO 2005012274, 2005
    • 7b Wang C, Ma Z, Sun X.-L, Gao Y, Guo Y.-H, Tang Y, Shi L.-P. Organometallics 2006; 25: 3259
    • 7c Sanz R, Fernández Y, Castroviejo MP, Pérez A, Fañanás FJ. J. Org. Chem. 2006; 71: 6291
    • 7d Deobald AM, de Camargo LR. S, Tabarelli G, Höner M, Rodrigues OE. D, Alves D, Braga AL. Tetrahedron Lett. 2010; 51: 3364
    • 7e Sarmiento GP, Vitale RG, Afeltra J, Moltrasio GY, Moglioni AG. Eur. J. Med. Chem. 2011; 46: 101
    • 7f Wadsworth H, Jones PA, Chau W.-F, Durrant C, Morisson-Iveson V, Passmore J, O’Shea D, Wynn D, Khan I, Black A, Avory M, Trigg W. Bioorg. Med. Chem. Lett. 2012; 22: 5795

      For reviews on transition-metal-catalyzed C–S coupling reactions, see:
    • 8a Kondo T, Mitsudo TA. Chem. Rev. 2000; 100: 3205
    • 8b Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 8c Eichman CC, Stambuli JP. Molecules 2011; 16: 590
    • 8d Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 8e Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706

    • For books/book chapters on transition-metal-catalyzed C–S coupling reactions, see:
    • 8f Thuillier A, Metzner P. Sulfur Reagents in Organic Synthesis. Academic Press; New York: 1994
    • 8g Wardell JL, Patai S. The Chemistry of the Thiol Group. Wiley; Chichester: 1974

      For reviews and book chapters focusing on Cu-catalyzed C–S coupling reactions, see:
    • 9a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 9b Pappo DE In Copper-Mediated Cross-Coupling Reactions. Evano G, Blanchard N. Wiley-VCH; Weinheim: 2014: 643

      For selected examples for copper-catalyzed C–S cross-coupling reactions of aryl halides with thiols, see:
    • 10a Yamamoto T, Sekine Y. Can. J. Chem. 1984; 62: 1544
    • 10b Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 10c Kwong FY, Buchwald SL. Org. Lett. 2002; 4: 3517
    • 10d Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 10e Jogdand NR, Shingate BB, Shingare MS. Tetrahedron Lett. 2009; 50: 6092
    • 10f Feng Y, Zhao X, Wang J, Zheng F, Xu H. Chin. J. Chem. 2009; 27: 2423
    • 10g Chen C.-K, Chen Y.-W, Lin C.-H, Lin H.-P, Lee C.-F. Chem. Commun. 2010; 46: 282
    • 10h Xu R, Wan J.-P, Mao H, Pan Y. J. Am. Chem. Soc. 2010; 132: 15531
    • 10i Feng Y.-S, Li Y.-Y, Tang L, Wu W, Xu H.-J. Tetrahedron Lett. 2010; 51: 2489
    • 10j Niu L.-F, Cai Y, Liang C, Hui X.-P, Xu P.-F. Tetrahedron 2011; 67: 2878
    • 10k Kao H.-L, Chen C.-K, Wang Y.-J, Lee C.-F. Eur. J. Org. Chem. 2011; 1776
    • 10l Xu H.-J, Liang Y.-F, Zhou X.-F, Feng Y.-S. Org. Biomol. Chem. 2012; 10: 2562
    • 10m Su K, Qiu Y, Yao Y, Zhang D, Jiang S. Synlett 2012; 23: 2853
    • 10n Ganesh Babu S, Karvembu R. Tetrahedron Lett. 2013; 54: 1677
    • 10o Kamal A, Srinivasulu V, Murty JN. S. R. C, Shankaraiah N, Nagesh N, Reddy TS, Rao AV. S. Adv. Synth. Catal. 2013; 355: 2297
    • 10p Liu Y, Huang B, Cao X, Wu D, Wan J.-P. RSC Adv. 2014; 4: 37733
    • 10q So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
  • 11 Yu C, Jin B, Liu Z, Zhong W. Can. J. Chem. 2010; 88: 485
  • 12 Luo P.-S, Yu M, Tang R.-Y, Zhong P, Li J.-H. Tetrahedron Lett. 2009; 50: 1066
    • 13a Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 13b Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
    • 14a Prasad DJ. C, Sekar G. Org. Lett. 2011; 13: 1008
    • 14b Akkilagunta VK, Kakulapati RR. J. Org. Chem. 2011; 76: 6819
  • 15 Prasad DJ. C, Sekar G. Org. Biomol. Chem. 2013; 11: 1659

    • Selected examples for cross-coupling reaction of aryl halides with 2-aminothiophenol:
    • 16a Lv X, Bao W. J. Org. Chem. 2007; 72: 3863
    • 16b Ranu BC, Saha A, Jana R. Adv. Synth. Catal. 2007; 349: 2690
    • 16c Carril M, SanMartin R, Domínguez E, Tellitu I. Chem. Eur. J. 2007; 13: 5100
    • 16d Xu H.-J, Zhao X.-Y, Fu Y, Feng Y.-S. Synlett 2008; 3063
    • 16e Sperotto E, van Klink GP. M, de Vries JG, van Koten G. J. Org. Chem. 2008; 73: 5625
    • 16f Xu H.-J, Zhao X.-Y, Deng J, Fu Y, Feng Y.-S. Tetrahedron Lett. 2009; 50: 434
    • 16g Feng Y, Wang H, Sun F, Li Y, Fu X, Jin K. Tetrahedron 2009; 65: 9737
    • 16h Bhadra S, Sreedhar B, Ranua BC. Adv. Synth. Catal. 2009; 351: 2369
    • 16i Basu B, Mandal B, Das S, Kundu S. Tetrahedron Lett. 2009; 50: 5523
    • 16j Schwab RS, Singh D, Alberto EE, Piquini P, Rodrigues OE. D, Braga AL. Catal. Sci. Technol. 2011; 1: 569
    • 16k Salam N, Kundu SK, Roy AS, Mondal P, Roy S, Bhaumik A, Islam SM. Catal. Sci. Technol. 2013; 3: 3303
    • 16l Uyeda C, Tan Y, Fu GC, Peters JC. J. Am. Chem. Soc. 2013; 135: 9548
  • 17 Wallance TJ, Schriesheim A, Bartok W. J. Org. Chem. 1963; 28: 1311
  • 18 In the Sigma-Aldrich catalog 2014, the price for 2-amino-thiophenol is USD 141.50 per 100 gram, the price for benzothiazole is USD 44.30 per 100 gram.
    • 19a Hilf C, Bosold F, Harms K, Marsch M, Boche G. Chem. Ber. Recl. 1997; 130: 1213
    • 19b Zhuravlev FA. Tetrahedron Lett. 2006; 47: 2929
    • 19c Sánchez RS, Zhuravlev FA. J. Am. Chem. Soc. 2007; 129: 5824
    • 19d Zhang W, Zeng Q, Zhang X, Tian Y, Yue Y, Guo Y, Wang Z. J. Org. Chem. 2011; 76: 4741
    • 19e Yang Z, Chen X, Wang S, Liu J, Xie K, Wang A, Tan Z. J. Org. Chem. 2012; 77: 7086
    • 19f Feng Y.-S, Qi H.-X, Wang W.-C, Liang Y.-F, Xu H.-J. Tetrahedron Lett. 2012; 53: 2914
    • 19g Yao L, Zhou Q, Han W, Wei S. Eur. J. Org. Chem. 2012; 6856
    • 19h Gao Q, Wu X, Jia F, Liu M, Zhu Y, Cai Q, Wu A. J. Org. Chem. 2013; 78: 2792
    • 19i Yang Z, Wang A, Chen X, Gui Q, Liu J, Tan Z, Wang H, Shi J.-C. Synlett 2013; 24: 1549

      For a review on iron-catalyzed C–S coupling reactions, see:
    • 20a Correa A, Macheño OG, Bolm C. Chem. Soc. Rev. 2008; 37: 1108

    • For a highlight about the controversial Cu- or Fe-catalyzed couplings, see:
    • 20b Buchwald SL, Bolm C. Angew. Chem. Int. Ed. 2009; 48: 5586

    • For selected examples of iron-catalyzed C–S cross-coupling reactions, see:
    • 20c Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 20d Wu J.-R, Lin C.-H, Lee C.-F. Chem. Commun. 2009; 4450
    • 20e Wu WY, Wang JC, Tsai FY. Green Chem. 2009; 11: 326
    • 20f Ku X, Huang H, Jiang H, Liu H. J. Comb. Chem. 2009; 11: 338
    • 20g Qiu J.-W, Zhang X.-G, Tang R.-Y, Zhong P, Lia J.-H. Adv. Synth. Catal. 2009; 351: 2319
    • 20h Kovács S, Novák Z. Org. Biomol. Chem. 2011; 9: 711
    • 20i Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. Chem. Commun. 2012; 48: 76
    • 20j Lin Y.-Y, Wang Y.-J, Lin C.-H, Chen C.-H, Lee C.-F. J. Org. Chem. 2012; 77: 6100
  • 21 Lee HW, Chan AS. C, Kwong FY. Tetrahedron Lett. 2009; 50: 5868
  • 22 Using 10 mol% Cu with 2 equiv Cs2CO3 in 2.0 mL ethylene glycol catalytic system (ref. 19g), 35% GC yield was obtained for reaction of benzothiazole and 3-nitroiodobenzene.
  • 23 Betebenner DA, DeGoey DA, Maring CJ, Krueger AC, Iwasaki N, Rockway TW, Cooper CS, Anderson DD, Donner PL, Green BE, Kempf DJ, Liu D, Mcdaniel KF, Madigan DL, Motter CE, Pratt JK, Shanley JP, Tufano MD, Wagner R, Zhang R, Molla A, Mo H, Pilot-Matias TJ, Masse SV. L, Carrick RJ, He W, Lu L, Grampovnik DJ. WO 2007076034 A2 20070705, 2007
  • 24 Ishiguro S, Shimada S, Seya M, Okue M, Yagi Y, Ogane N, Saito Y. JP 10029985 A 19980203, 1998
  • 25 General Procedure for the Iron-Catalyzed S-Arylation of Benzothiazole with Aryl Iodides FeCl3 (32 mg, 20 mol%), trans-1,2-diaminocyclohexane (48 μL, 40 mol%), benzothiazole (108 μL, 1.0 mmol), (hetero)aryl iodide (1.5 mmol), NaOH (0.12 g, 3.0 mmol), and H2O (1.0 mL) were loaded into a reaction tube equipped with a septum in the presence of Teflon-coated magnetic stirrer bar on bench-top under air. The tube was then placed into a preheated oil bath (110 °C) and stirred for 24 h. After completion of reaction as judged by GC analysis, the reaction tube was allowed to cool to r.t. EtOAc was added for product extraction. The organic layer was separated, and the aqueous layer was further washed with EtOAc (3× ca. 10 mL). The organic part was concentrated under reduced pressure. The crude products were purified by flash column chromatography on silica gel (230–400 mesh) to afford the desired product (see Supporting Information for details). 2-Aminophenyl Phenyl Sulfide (Table 2, Entry 1) Yellow liquid; Rf  = 0.6 (EtOAc–hexane, 1:9). 1H NMR (400 MHz, CDCl3): δ = 4.18 (br s, 2 H), 6.81–6.85 (m, 2 H), 7.18 (t, J = 7.6 Hz, 3 H), 7.27–7.32 (m, 3 H), 7.52–7.55 (dd, J = 6.8, 1.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 114.39, 115.44, 118.8, 125.5, 126.5, 129.0, 131.2, 136.9, 137.5, 148.9 (see Supporting Information for details). (2-Aminophenyl) 3-Pyridyl Sulfide (Table 3, Entry 1) Brown solid; Rf  = 0.5 (EtOAc–hexane, 1:1). 1H NMR (400 MHz, CDCl3): δ = 4.39 (br s, 2 H), 6.71–6.77 (m, 2 H), 7.06–7.09 (q, J = 4.8 Hz, 1 H), 7.20–7.24 (td, J = 8.0, 1.6 Hz, 1 H), 7.27–7.29 (dt, J = 6.4, 1.6 Hz, 1 H), 7.42–7.44 (dd, J = 7.6, 1.2 Hz, 1 H), 8.30–8.32 (dd, J = 4.8, 1.6 Hz, 1 H), 8.38 (d, J = 1.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 112.4, 115.5, 118.8, 123.7, 131.6, 133.8, 134.2, 137.4, 146.4, 147.5, 149.0 (see Supporting Information for details).