Synthesis 2015; 47(03): 395-410
DOI: 10.1055/s-0034-1379330
paper
© Georg Thieme Verlag Stuttgart · New York

Hydrochalcogenation of Symmetrical and Unsymmetrical Buta-1,3-diynes with Diaryl Dichalcogenides: Facile Entry to (Z)-1-(Organylchalcogeno)but-1-en-3-yne Derivatives

Cheerladinne Venkateswarlu
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, Fax: +91(80)23600529   Email: scn@orgchem.iisc.ernet.in
,
Srinivasan Chandrasekaran*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, Fax: +91(80)23600529   Email: scn@orgchem.iisc.ernet.in
› Author Affiliations
Further Information

Publication History

Received: 31 July 2014

Accepted after revision: 26 September 2014

Publication Date:
13 November 2014 (online)


Abstract

This work describes an efficient and stereoselective method for the hydrothiolation and -selenation of buta-1,3-diyne derivatives using diaryl disulfides or diselenides, respectively. In the presence of rongalite (HOCH2SO2Na) and potassium carbonate, buta-1,3-diynes undergo stereoselective addition of the thiolate or selenide anion generated in situ from diaryl disulfides or diselenides to afford the corresponding (Z)-1-sulfanyl- or (Z)-1-selanylalk-1-en-3-yne derivatives, respectively. The reaction of buta-1,3-diynes with diaryl disulfides or diselenides at higher temperature (70 °C) gave a mixture of monothiolation/selenation and bisthiolation/selenation products in moderate to good yields.

Supporting Information

 
  • References

    • 1a Schaumann E. Top. Curr. Chem. 2007; 274: 1
    • 1b Bichler P, Love J. Top. Organomet. Chem. 2010; 31: 39
    • 1c Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 1d Hoogenboom R. Angew. Chem. Int. Ed. 2010; 49: 3415
    • 2a Ichinose Y, Wakamatsu K, Nozaki K, Birbaum J.-L, Oshima K, Utimoto K. Chem. Lett. 1987; 1647
    • 2b Zschunke A, Mügge C, Hintzsche E, Schroth W. J. Prakt. Chem. 1992; 334: 141
    • 3a Boar RB, Hawkins DW, McGhie JF, Barton DH. R. J. Chem. Soc., Perkin Trans. 1 1973; 654
    • 3b Oshima K, Shimoji K, Takahashi H, Yamamoto H, Nozaki H. J. Am. Chem. Soc. 1973; 95: 2694
    • 3c Oshima K, Takahashi H, Yamamoto H, Nozaki H. J. Am. Chem. Soc. 1973; 95: 2693
    • 3d Mura AJ. Jr, Bennett DA, Cohen T. Tetrahedron Lett. 1975; 16: 4433
    • 3e Mura AJ. Jr, Majetich G, Grieco PA, Cohen T. Tetrahedron Lett. 1975; 16: 4437
    • 3f Mukaiyama T, Fukuyama S, Kumamoto T. Tetrahedron Lett. 1968; 9: 3787
    • 3g Dabdoub MJ, Baroni AC. M, Lenardão EJ, Gianeti TR, Hurtado GR. Tetrahedron 2001; 57: 4271
    • 3h Dittami JP, Nie XY, Nie H, Ramanathan H, Buntel C, Rigatti S, Bordner J, Decosta DL, Williard P. J. Org. Chem. 1992; 57: 1151
    • 3i Guerrero PG, Dabdoub MJ, Marques FA, Wosch CL, Baroni AC. M, Ferreira AG. Synth. Commun. 2008; 38: 4379
    • 3j Cohen T, Weisenfeld RB. J. Org. Chem. 1979; 44: 3601
    • 3k Screttas CG, Micha-Screttas M. J. Org. Chem. 1978; 43: 1064
    • 3l Okamura H, Miura M, Takei H. Tetrahedron Lett. 1979; 20: 43
    • 3m Hojo M, Harada H, Yoshizawa J, Hosomi A. J. Org. Chem. 1993; 58: 6541
    • 3n Kanemasa S, Kobayashi H, Tanaka J, Tsuge O. Bull. Chem. Soc. Jpn. 1988; 61: 3957
    • 3o Harmata M, Jones DE. Tetrahedron Lett. 1996; 37: 783
    • 3p Trost BM, Tanigawa Y. J. Am. Chem. Soc. 1979; 101: 4413
    • 3q Feiring AE. J. Org. Chem. 1980; 45: 1962
    • 3r Tingoli M, Tiecco M, Testaferri L, Temperini A, Pelizzi G, Bacchi A. Tetrahedron 1995; 51: 4691
    • 3s Huang X, Sun AM. Synth. Commun. 1997; 27: 2725
    • 3t Wenkert E, Ferreira TW, Michelotti EL. J. Chem. Soc., Chem. Commun. 1979; 637
    • 3u Okamura H, Miura M, Kosugi K, Takei H. Tetrahedron Lett. 1980; 21: 87
    • 4a Screttas CG, Micha-Screttas M. J. Org. Chem. 1979; 44: 713
    • 4b Foubelo F, Gutiérrez A, Yus M. Tetrahedron Lett. 1999; 40: 8173
  • 5 Alonso JM, Díaz-Álvarez AE, Criado A, Pérez D, Peña D, Guitián E. Angew. Chem. Int. Ed. 2012; 51: 2
    • 6a Freeman F, Lu H, Zeng Q, Rodriguez E. J. Org. Chem. 1994; 59: 4350
    • 6b Dabdoub MJ, Dabdoub VB, Lenardão EJ, Hurtado GR, Barbosa SL, Guerrero PG, Nazário CE. D, Viana LH, Santana AS, Baroni AC. M. Synlett 2009; 986
    • 6c Volkov AN, Volkova KA. Russ. J. Org. Chem. 2004; 40: 1679
  • 7 Santana AS, Carvalho DB, Casemiro NS, Hurtado GR, Viana LH, Kassab NM, Barbosa SL, Marques FA, Guerrero PG. Jr, Baroni AC. M. Tetrahedron Lett. 2012; 53: 5733
    • 8a Alves D, Luchese C, Nogueira CW, Zeni G. J. Org. Chem. 2007; 72: 6726
    • 8b Schumacher RF, Alves D, Brandão R, Nogueira CW, Zeni G. Tetrahedron Lett. 2008; 49: 538
    • 8c Barancelli DA, Acker CI, Menezes PH, Zeni G. Org. Biomol. Chem. 2011; 9: 1529
  • 9 Alves D, Sachini M, Jacob RG, Lenardão EJ, Contreira ME, Savegnago L, Perin G. Tetrahedron Lett. 2011; 52: 133
    • 10a Dabdoub MJ, Dabdoub VB, Comasseto JV. Tetrahedron Lett. 1992; 33: 2261
    • 10b Dabdoub MJ, Dabdoub VB. Tetrahedron 1995; 51: 9839
    • 11a Sridhar PR, Saravanan V, Chandrasekaran S. Pure Appl. Chem. 2005; 77: 145
    • 11b Nasir Baig RB, Kanimozhi CK, Sudhir VS, Chandrasekaran S. Synlett 2009; 1227
    • 11c Prabhu KR, Devan N, Chandrasekaran S. Synlett 2002; 1762
    • 11d Sureshkumar D, Koutha SM, Chandrasekaran S. J. Am. Chem. Soc. 2005; 127: 12760
    • 11e Prabhu KR, Sivanand PS, Chandrasekaran S. Angew. Chem. Int. Ed. 2000; 39: 4316
    • 12a Gopinath P, Vidyarini RS, Chandrasekaran S. Eur. J. Org. Chem. 2009; 6043
    • 12b Devan N, Sridhar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
    • 13a Wang Z.-L, Tang R.-Y, Luo P.-S, Deng C.-L, Zhong P, Li J.-H. Tetrahedron 2008; 64: 10670
    • 13b Kotha S, Khedkar P. Chem. Rev. 2011; 112: 1650
  • 14 Ganesh V, Chandrasekaran S. Synthesis 2009; 3267
  • 15 The formation of traces of the bischalcogenation product was observed. Further increasing the temperature of the reaction (50–80 °C) furnished a minor amount of bischalcogenation product along with (Z)-1-(organylchalcogeno)enyne as the major product.
  • 16 Tang R.-Y, Zhong P, Lin Q.-L. Chin. J. Chem. 2007; 25: 558
  • 17 5% of the E-isomer was isolated along with Z-isomer of 5o.
    • 18a Diselenide bonds are intrinsically more stable than disulfide bonds due to their lower redox potential and more difficult to cleave reductively. Hence the hydroselenation had to be carried out at a slightly higher temperature (50 °C) to facilitate the cleavage of diselenide followed by reaction with buta-1,3-diynes.
    • 18b Beld J, Woycechowsky KJ, Hilvert D. Biochemistry 2007; 46: 5382
    • 18c Cheng G, He Y, Xie L, Nie Y, He B, Zhang Z, Gu Z. Int. J. Nanomed. 2012; 7: 3991
    • 19a Block E, Birringer M, DeOrazio R, Fabian J, Glass RS, Guo C, He C, Lorance E, Qian Q, Schroeder TB, Shan Z, Thiruvazhi M, Wilson GS, Zhang X. J. Am. Chem. Soc. 2000; 122: 5052
    • 19b Schroth W, Dunger S, Billig F, Spitzner R, Herzschuh R, Vogt A, Jende T, Israel G, Barche J, Ströhl D, Sieler J. Tetrahedron 1996; 52: 12677
    • 19c Bierer DE, Dener JM, Dubenko LG, Gerber RE, Litvak J, Peterli S, Peterli-Roth P, Truong TV, Mao G, Bauer BE. J. Med. Chem. 1995; 38: 2628
  • 20 Thyagarajan BS, Chandler RA. J. Chem. Soc., Chem. Commun. 1990; 328
  • 21 Kuniyasu H, Takekawa K, Yamashita F, Miyafuji K, Asano S, Takai Y, Ohtaka A, Tanaka A, Sugoh K, Kurosawa H, Kambe N. Organometallics 2008; 27: 4788
    • 22a Yin W, He C, Chen M, Zhang H, Lei A. Org. Lett. 2009; 11: 709
    • 22b Trost BM, Chan VS, Yamamoto D. J. Am. Chem. Soc. 2010; 132: 5186
  • 23 Iwasaki M, Fujino D, Wada T, Kondoh A, Yorimitsu H, Oshima K. Chem. Asian J. 2011; 6: 3190