Synlett 2014; 25(15): 2196-2200
DOI: 10.1055/s-0034-1378540
letter
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Palladium-Catalyzed Allylation of β-Enaminones

Imen Erray
a   Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences Campus Universitaire, Université de Tunis El Manar, 2092 Tunis, Tunisia
b   Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, Institut Parisien de Chimie Moléculaire, FR2769 Institut de Chimie Moléculaire, 75005, Paris, France   Fax: +33(1)44274287   Email: giovanni.poli@upmc.fr   julie.oble@upmc.fr
c   CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
,
Farhat Rezgui
a   Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences Campus Universitaire, Université de Tunis El Manar, 2092 Tunis, Tunisia
,
Julie Oble*
b   Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, Institut Parisien de Chimie Moléculaire, FR2769 Institut de Chimie Moléculaire, 75005, Paris, France   Fax: +33(1)44274287   Email: giovanni.poli@upmc.fr   julie.oble@upmc.fr
c   CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
,
Giovanni Poli*
b   Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, Institut Parisien de Chimie Moléculaire, FR2769 Institut de Chimie Moléculaire, 75005, Paris, France   Fax: +33(1)44274287   Email: giovanni.poli@upmc.fr   julie.oble@upmc.fr
c   CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
› Author Affiliations
Further Information

Publication History

Received: 12 June 2014

Accepted after revision: 26 June 2014

Publication Date:
31 July 2014 (online)


Abstract

A new palladium-catalyzed approach for the C-allylation of β-enaminones under microwave irradiation is reported. This methodology provides an easy access to a variety of α-allylated enaminones. The reaction takes place with the preservation of the enamine function, which is poised for further transformations towards nitrogen-containing heterocycles.

Supporting Information

 
  • References and Notes

    • 1a Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Weinheim: Wiley-VCH; 2004. 2nd ed.: Vol. 1 and 2:
    • 1b Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience; New York: 2002
    • 1c Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis. Wiley; New York: 2004
    • 1d Diederich F, de Meijere A. Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH; Weinheim: 2004. 2nd ed

      For reviews, see:
    • 2a Trost BM, Vranken DL. V. Chem. Rev. 1996; 96: 395
    • 2b Trost BM. Chem. Pharm. Bull. 2002; 50: 1
    • 2c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 2d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
  • 3 Poli G, Prestat G, Liron F, Kammerer-Pentier C In Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Kazmaier U. Top. Organomet. Chem. 2012. 38. 1
  • 4 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387

    • For examples of Pd-catalyzed enamine allylations, see:
    • 5a Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
    • 5b Bihelovic F, Matovic R, Vulovic B, Saicic RN. Org. Lett. 2007; 9: 5063
    • 5c Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
    • 5d Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 5e Zhao X, Liu D, Xie F, Zhang W. Tetrahedron 2009; 65: 512
    • 5f Usui I, Schmidt S, Breit B. Org. Lett. 2009; 11: 1453
    • 5g Vulovic B, Bihelovic F, Matovic R, Saicic RN. Tetrahedron 2009; 65: 10485
    • 5h Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
    • 5i Afewerki S, Ibrahem I, Rydfjord J, Breistein P, Córdova A. Chem. Eur. J. 2012; 18: 2972
    • 5j Li M, Datta S, Barber DM, Dixon DJ. Org. Lett. 2012; 14: 6350
    • 5k Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471

      For examples of Pd-catalyzed C-alkenylation of enamides with conservation of the nitrogen atom, see:
    • 6a Gigant N, Gillaizeau I. Org. Lett. 2012; 14: 3304
    • 6b Gigant N, Chausset-Boissarie L, Rey-Rodriguez R, Gillaizeau I. C. R. Chim. 2013; 16: 358

      For recent examples, see:
    • 7a Kammerer C, Prestat G, Madec D, Poli G. Chem. Eur. J. 2009; 15: 4224
    • 7b Vogel S, Bantreil X, Maitro G, Prestat G, Madec D, Poli G. Tetrahedron Lett. 2010; 51: 1459
    • 7c Bantreil X, Prestat G, Moreno A, Madec D, Fristrup P, Norrby PO, Pregosin PS, Poli G. Chem. Eur. J. 2011; 17: 2885
    • 7d Boutier A, Kammerer-Pentier C, Krause N, Prestat G, Poli G. Chem. Eur. J. 2012; 18: 3840
    • 7e Giboulot S, Liron F, Prestat G, Wahl B, Sauthier M, Castanet Y, Mortreux A, Poli G. Chem. Commun. 2012; 48: 5889
    • 7f Lorion MM, Gasperini D, Oble J, Poli L. Org. Lett. 2013; 15: 3050
    • 7g Rajabi J, Lorion MM, Linh LyV, Liron F, Oble J, Prestat G, Poli G. Chem. Eur. J. 2014; 20: 1539
    • 7h Mistico L, Ay E, Huynh V, Bourderioux A, Chaumeil H, Chemla F, Ferreira F, Oble J, Pérez-Luna A, Poli G, Prestat G. J. Organomet. Chem. 2014; 760: 124
    • 7i Rigamonti M, Prestat G, Broggini G, Poli G. J. Organomet. Chem. 2014; 760: 149
    • 7j Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; in press; DOI: 10.1002/ejoc.201402049
  • 8 During the redaction of this manuscript, a related study dealing with the Pd-catalyzed cyclization of N-tosyl-substituted β-enaminocarbonyl compounds with allylic bisacetates was reported, see: Yoshida M, Kinoshita K, Namba K. Org. Biomol. Chem. 2014; 12: 2394 ; according to the authors, the corresponding N-benzylated substrates did not react under their reaction conditions

    • For reviews, see:
    • 9a Elassar A.-ZA, El-Khair AA. Tetrahedron 2003; 59: 8463
    • 9b Negri G, Kascheres AJ. J. Heterocycl. Chem. 2004; 41: 461
    • 9c Stanovnik B, Steve J. Chem. Rev. 2004; 2433
    • 9d Ferraz HM. C, Goncalo ER. S. Quim. Nova 2007; 30: 957
    • 9e Govindh B, Diwakar BS. Murthy Y. L. N. Org. Commun. 2012; 5: 105

      For some selected Pd-catalyzed reactions, see:
    • 10a Iida H, Yuasa Y, Kibayashi C. J. Org. Chem. 1980; 45: 2938
    • 10b Kasahara A, Izumi T, Murakami S, Yanai H, Takatori M. Bull. Chem. Soc. Jpn. 1986; 59: 927
    • 10c Sakamoto T, Nagano T, Kondo Y, Yamanaka H. Synthesis 1990; 215
    • 10d Michael JP, Chang S.-F, Wilson C. Tetrahedron Lett. 1993; 34: 8365
    • 10e Koerber-Plé K, Massiot G. Synlett 1994; 759
    • 10f Chen L.-C, Yang S.-C, Wang H.-M. Synthesis 1995; 385
    • 10g Latham EJ, Stanfoth SP. Chem. Commun. 1996; 2253
    • 10h Latham EJ, Stanfoth SP. J. Chem. Soc., Perkin Trans. 1 1997; 2059
    • 10i Blache Y, Sinibaldi-Troin M.-E, Voldoire A, Chavignon O, Gramain J.-C, Teulade J.-C, Chapat J.-P. J. Org. Chem. 1997; 62: 8553
    • 10j Kirschbaum S, Waldmann H. J. Org. Chem. 1998; 63: 4936
    • 10k Edmonson SD, Mastracchio A, Parmee ER. Org. Lett. 2000; 2: 1109
    • 10l Yamazaki K, Kondo Y. J. Comb. Chem. 2002; 4: 191
    • 10m Yamazaki K, Nakamura Y, Kondo Y. J. Org. Chem. 2003; 68: 6011
    • 10n Sorensen US, Pombo-Villar E. Helv. Chim. Acta 2004; 87: 82
    • 10o Dajka-Halász B, Monsieurs K, Eliás O, Károlyházy L, Tapolcsányi P, Maes BU. W, Riedl Z, Hajós G, Dommisse RA, Lemière GL. F, Košmrlj J, Mátyus P. Tetrahedron 2004; 60: 2283
    • 10p Gu Z.-Y, Zhu T.-H, Cao J.-J, Xu X.-P, Wang S.-Y, Ji S.-J. ACS Catal. 2014; 4: 49

    • For some selected Cu-catalyzed reactions, see:
    • 10q Yan S, Wu H, Wu N, Jiang Y. Synlett 2007; 2699
    • 10r Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
    • 10s Bernini R, Fabrizi G, Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078

    • For Fe-catalyzed reactions, see:
    • 10t Guan Z.-H, Ren Z.-Y, Liu X.-Y, Liang Y.-M. Chem. Commun. 2010; 46: 2823

    • For Au-catalyzed reactions, see:
    • 10u Arcadi A, Di Giuseppe S, Marinelli F, Rossi E. Tetrahedron: Asymmetry 2001; 12: 2715
    • 10v Saito A, Konishi T, Hanzawa Y. Org. Lett. 2010; 12: 372
  • 11 Bromidge SM, Entwistle DA, Goldstein J, Orlek BS. Synth. Commun. 1993; 23: 487
  • 12 In order to avoid the hydrolysis of the unreacted starting material and/or the product, the yields were determined by 1H NMR spectroscopy of the crude mixture (obtained after rapid filtration on silica gel and evaporation) using 1,3,5-trimethoxybenzene as internal standard.
  • 13 In general, the allylated product 2a was obtained with an average 1:1 E/Z ratio (determined by 1H NMR spectroscopy of the crude mixture). This ratio is variable and can change during silica gel purification.
  • 14 For a recent review, see: Caddick S, Fitzmaurice R. Tetrahedron 2009; 65: 3325
  • 15 See Supporting Information.
  • 16 When the reaction was carried out without either the precatalyst/ligand system or the precatalyst, only unreacted enaminone 1a was recovered with traces of the corresponding imino–enol tautomer 1a′ (see Supporting Information).
  • 17 General Procedure To a suspension of Pd(OAc)2 (13 mg, 0.057 mmol, 10 mol%), dppf (35 mg, 0.063 mmol, 11 mol%), and proton sponge (0.12 g, 0.57 mmol, 1 equiv) in THF (0.5 mL) in a Schlenk flask equipped with a septum, under argon atmosphere, was added allyl acetate (0.12 mL, 1.14 mmol, 2.0 equiv). After 5 min stirring, a solution of enaminone 1a (100 mg, 0.57 mmol, 1 equiv) in THF (0.5 mL) was added, the flask was sealed, and the mixture was stirred during 1 h under microwave irradiation at 100 °C. The resulting crude was filtered on a plug of silica gel. The solvent was removed, and the mixture was purified by flash chromatography on silica gel (EtOAc–cyclohexane, 20:80) to afford 86 mg of the allylated enaminone 2a as a mixture of Z and E isomers. Analytical Data for Compound 2a Yield 60%; yellow oil; Z/E ratio = 1.7:1 (analysis of the crude 1H NMR spectrum showed a Z/E ratio of 1:1). IR (film): 3272, 3030, 2920, 1638 cm–1. 1H NMR (300 MHz, CDCl3): δ = 10.24 [br s, 1 H, NH(Z)], 7.42–7.25 [m, 11 H, =CHNH(E) + CH Ar(Z+E)], 6.66 [d, J = 12.4 Hz, 1 H, =CHNH(Z)], 5.94–5.71 [m, 2 H, HC=CH2(Z+E)], 5.10–4.99 (m, 4 H, HC=CH2(Z+E)], 4.43 (d, J = 5.9 Hz, 2 H, CH 2 Ph(E)], 4.39 (d, J = 6.1 Hz, 2 H, CH 2 Ph(Z)], 3.12 [dt, J = 6.0, 1.6 Hz, 2 H, CH 2 CH=CH2(E)], 2.94 [dt, J = 5.8, 1.6 Hz, 2 H, CH 2 CH=CH2(Z)], 2.22 (s, 3 H, CH3CO(E)], 2.13 (s, 3 H, CH 3 CO(Z)]. 13C NMR (75 MHz, CDCl3): δ = 198.2, 194.2, 153.0, 149.5, 138.6, 138.5, 138.4, 136.0, 128.9, 128.8, 127.8, 127.6, 127.0, 126.9, 114.8, 114.6, 102.8, 52.5, 52.2, 35.6, 28.0, 27.6, 24.4. HRMS: m/z calcd for C14H17NONa [M + Na]+: 238.1208; found: 238.1204.
  • 18 Formation of the linear product, when using cinnamyl acetate, is a further proof of the direct C-allylation mechanism.