Synthesis 2014; 46(18): 2499-2505
DOI: 10.1055/s-0034-1378316
paper
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Heterocyclization of 1,3-Diynes with Nitriles in the Presence of Aqueous Potassium Hydroxide: Synthesis of 2,4-Disubstituted 5-[(E)-2-Phenylethenyl]-1,3-oxazoles

Ling Ming
Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China   Fax: +86(21)65981376   Email: xmzhao08@mail.tongji.edu.cn
,
Jialiang Tang
Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China   Fax: +86(21)65981376   Email: xmzhao08@mail.tongji.edu.cn
,
Xiaoming Zhao*
Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China   Fax: +86(21)65981376   Email: xmzhao08@mail.tongji.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 17 March 2014

Accepted after revision: 20 May 2014

Publication Date:
24 June 2014 (online)


Abstract

A transition-metal-free heterocyclization of 1,3-diynes and nitriles in the presence of either aqueous potassium hydroxide or cesium hydroxide in 1,4-dioxane at 100 °C was realized. This method provided stereoselectively 2,4-disubstituted 5-[(E)-2-phenylethenyl]-1,3-oxazoles in moderate to good yields.

Supporting Information

 
  • References

    • 1a Atkins JM, Vedejs E. Org. Lett. 2005; 7: 3351
    • 1b Zhang J, Ciufolini MA. Org. Lett. 2009; 11: 2389
    • 1c Vedejs E, Barda DA. Org. Lett. 2000; 2: 1033
    • 1d Walsh CT, Macolmson SJ, Young TS. Chem. Bio. 2012; 7: 429
    • 2a Desroy N, Moreau F, Briet S, Le Fralliec G, Floquet S, Durant L, Vongsouthi V, Gerusz V, Denis A, Escaich S. Bioorg. Med. Chem. 2009; 17: 1276
    • 2b Heng S, Gryncel KR, Kantrowitz ER. Bioorg. Med. Chem. 2009; 17: 3916
    • 2c Copp BR. Nat. Prod. Rep. 2003; 20: 535
    • 3a Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T. J. Am. Chem. Soc. 1986; 108: 2780
    • 3b Adamczeski M, Quinoa E, Crews P. J. Am. Chem. Soc. 1988; 110: 1598
    • 3c Ichiba T, Yoshida WY, Scheuer PJ, Higa T, Gravalos DG. J. Am. Chem. Soc. 1991; 113: 3173
    • 3d Searle PA, Molinski TF. J. Am. Chem. Soc. 1995; 117: 8126
    • 3e Ishibashi Y, Ohba S, Nishiyama S, Yamamura S. Tetrahedron Lett. 1996; 37: 2997
    • 3f Sandler JS, Colin PL, Kelly M, Fenical W. J. Org. Chem. 2006; 71: 7245
    • 3g Chakraborty TK, Pulukuri KK, Sreekanth M. Tetrahedron Lett. 2010; 51: 6444
    • 3h Eto K, Yoshino M, Takahashi K, Ishihara J, Hatakeyama S. Org. Lett. 2011; 13: 5398
    • 3i Larivée A, Unger JB, Thomas M, Wirtz C, Dubost C, Handa S, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 304
    • 3j Jing Z. Nat. Prod. Rep. 2013; 30: 869
    • 4a Bonne D, Dekhane M, Zhu JP. Angew. Chem. Int. Ed. 2007; 46: 2485
    • 4b Williams DR, Fu L. Org. Lett. 2010; 12: 808
    • 4c Ohnmacht SA, Mamone P, Culshaw AJ, Greaney MF. Chem. Commun. 2008; 44: 1241
    • 4d Shi B, Blake AJ, Lewis W, Campbell IB, Judkins BD, Moody CJ. J. Org. Chem. 2010; 75: 152
    • 4e Pan YM, Zheng FJ, Lin HX, Zhan ZP. J. Org. Chem. 2009; 74: 3148
    • 4f Saito A, Iimura K, Hanzawa Y. Tetrahedron Lett. 2010; 51: 1471
    • 5a Nicolaou KC, Hao J, Reddy MV, Rao PB, Rassias G, Snyder SA, Huang X, Chen DY, Brenzovich WE, Giuseppone N, Giannakakou P, O’Brate A. J. Am. Chem. Soc. 2004; 126: 12897
    • 5b Lechel T, Lentz D, Reissig HU. Chem. Eur. J. 2009; 15: 5432
    • 5c Takeuchi H, Yanagida S, Ozaki T, Hagiwara S, Eguchi S. J. Org. Chem. 1989; 54: 431
    • 5d Keni M, Tepe JJ. J. Org. Chem. 2005; 70: 4211
    • 5e Wipf P, Miller CP. J. Org. Chem. 1993; 58: 3604
    • 5f Wendlandt AE, Stahl SS. Org. Biomol. Chem. 2012; 10: 3866
    • 5g Cordero FM, Giomi D, Lascialfari L. Prog. Heterocycl. Chem. 2013; 25: 291
    • 6a Wan C, Zhang J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
    • 6b Wan CF, Gao LF, Wang Q, Zhang JT, Wang ZY. Org. Lett. 2010; 12: 3902
    • 6c Xue WJ, Li Q, Zhu YP, Wang JG, Wu AX. Chem. Commun. 2012; 48: 3485
    • 6d Xie J, Jiang H, Cheng Y, Zhu C. Chem. Commun. 2012; 48: 979
    • 6e Fu LF. Top. Heterocycl. Chem. 2012; 29: 103
    • 7a Meyers AI, Tavares F. Tetrahedron Lett. 1994; 35: 2481
    • 7b Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
    • 7c Meyers AI, Tavares FX. J. Org. Chem. 1996; 61: 8207
    • 7d Williams DR, Lowder DP, Gu GY, Brooks DA. Tetrahedron Lett. 1997; 38: 331
    • 7e Wang Y, Li Z, Huang Y, Tang C, Wu X, Xu J, Yao H. Tetrahedron 2011; 67: 7406
    • 7f Huang Y, Ni L, Gan F, He Y, Xu J, Wu X, Yao H. Tetrahedron 2011; 67: 2066
    • 7g Babaev EV. Chem. Heterocycl. Comp. 2012; 48: 59
    • 8a Cano I, Alvarez E, Nicasio CM, Perez PJ. J. Am. Chem. Soc. 2011; 133: 191
    • 8b Lee JC, Kim S, Lee YC. Synth. Commun. 2003; 33: 1611
    • 8c Nesi R, Turchi S, Giomi D. J. Org. Chem. 1996; 61: 7933
    • 8d Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 8e Zhong CL, Tang BY, Yin P, Chen Y, He L. J. Org. Chem. 2012; 77: 4271
    • 8f Ferrini PG, Marxer A. Angew. Chem. Int. Ed. 1963; 2: 98
    • 8g Merkul E, Muller TJ. J. Chem. Commun. 2006; 42: 4817
    • 8h Young GL, Smith SA, Taylor RJ. K. Tetrahedron Lett. 2004; 45: 3797
    • 8i Lister J, Robinson R. J. Chem. Soc. 1912; 101: 1297
    • 8j Kumar MP, Liu R.-S. J. Org. Chem. 2006; 71: 4951
    • 8k Kison C, Opatz T. Chem. Eur. J. 2009; 15: 843
    • 8l Shi B, Blake AJ, Lewis W, Campbell IB, Judkins BD, Moody CJ. J. Org. Chem. 2010; 75: 152
    • 8m Jiang H, Huang H, Cao H, Qi C. Org. Lett. 2010; 12: 5561
    • 8n Pan YM, Zheng FJ, Lin HX, Zhan ZP. J. Org. Chem. 2009; 74: 3148
    • 8o Lee JJ, Kim J, Jun YM, Lee BM, Kim BH. Tetrahedron 2009; 65: 8821
    • 8p Coqueron P.-Y, Didier C, Ciufolini MA. Angew. Chem. Int. Ed. 2003; 42: 1411
    • 8q Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
    • 9a Kinjo R, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2011; 50: 5560
    • 9b Zheng QW, Hua RM. Tetrahedron Lett. 2010; 51: 4512
    • 9c Wang LG, Yu XQ, Feng XJ, Bao M. J. Org. Chem. 2013; 78: 1693
    • 9d Lavallo V, Frey GD, Donnadieu B, Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2008; 47: 5224
    • 10a Kramer S, Madsen JL. H, Rottlander M, Skrydstrup T. Org. Lett. 2010; 12: 2758
    • 10b Nun P, Dupuy S, Gaillard S, Poater A, Cavallo L, Nolan SP. Catal. Sci. Technol. 2011; 1: 58
    • 10c Pérez JM, Cano R, Yus M, Ramón DJ. Synthesis 2013; 45: 1373
    • 11a Okamoto T, Kudoh K, Wakamiya A, Yamaguchi S. Org. Lett. 2005; 7: 5301
    • 11b Jiang HF, Zeng W, Li YB, Wu WQ, Huang LB, Fu W. J. Org. Chem. 2012; 77: 5179
    • 11c Potta KT, Nye SA, Smith KA. J. Org. Chem. 1992; 57: 3895
    • 12a For Au-catalyzed heterocyclizations, see: He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 12b For Cu-catalyzed heterocyclizations, see: Li XW, Huang LB, Chen HJ, Wu WQ, Huang HW, Jiang HF. Chem. Sci. 2012; 3: 3463
  • 13 Saito A, Taniguchi A, Kambara Y, Hanzawa Y. Org. Lett. 2013; 15: 2672
  • 15 Wang LG.. Yu X. Q, Feng XJ, Bao M. Org. Lett. 2012; 14: 2418
    • 16a Zhang SL, Liu XY, Wang TQ. Adv. Synth. Catal. 2011; 353: 1463
    • 16b Yin WY, He C, Chen M, Zhang H, Lei AW. Org. Lett. 2009; 11: 709
    • 16c Zheng QW, Hua RM, Wan YZ. Appl. Organomet. Chem. 2010; 24: 314
    • 16d Wang D, Li JH, Li N, Gao TT, Hou SH, Chen BH. Green Chem. 2010; 12: 45
    • 16e Sugiyama J, Tomita I. Eur. J. Org. Chem. 2007; 4651