Semin Respir Crit Care Med 2014; 35(01): 145-156
DOI: 10.1055/s-0033-1363459
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

PET-CT: Current Applications and New Developments in the Thorax

Jeremy J. Erasmus
1   Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Osama Mawlawi
2   Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Brandon Howard
3   Department of Radiology, Duke University Medical Center, Durham, North Carolina
,
Edward F. Patz Jr.
3   Department of Radiology, Duke University Medical Center, Durham, North Carolina
4   Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
30 January 2014 (online)

Abstract

Positron emission tomography computed tomography(PET-CT) imaging has emerged as an essential clinical diagnostic tool in the evaluation of thoracic abnormalities. Currently, its primary role is for tumor imaging; it helps to differentiate benign from malignant nodules, stage tumors, determine response, and follow patients after therapy is complete. It has also been used for nononcologic diseases, but the indications are less well defined. PET is a fundamental component of the molecular imaging initiative, and as new more specific imaging probes and better instrumentation are developed, PET-CT is certain to improve diagnostic accuracy and become even more integrated into the imaging armamentarium.

 
  • References

  • 1 Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001; 285 (7) 914-924
  • 2 Hashimoto Y, Tsujikawa T, Kondo C , et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med 2006; 47 (3) 426-431
  • 3 Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg 2006; 82 (3) 1016-1020
  • 4 Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer 2004; 45 (1) 19-27
  • 5 Godoy MC, Naidich DP. Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology 2009; 253 (3) 606-622
  • 6 Tan BB, Flaherty KR, Kazerooni EA, Iannettoni MD ; American College of Chest Physicians. The solitary pulmonary nodule. Chest 2003; 123 (1, Suppl): 89S-96S
  • 7 Detterbeck FC, Falen S, Rivera MP, Halle JS, Socinski MA. Seeking a home for a PET, part 1: Defining the appropriate place for positron emission tomography imaging in the diagnosis of pulmonary nodules or masses. Chest 2004; 125 (6) 2294-2299
  • 8 Gould MK, Kuschner WG, Rydzak CE , et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 2003; 139 (11) 879-892
  • 9 Verboom P, van Tinteren H, Hoekstra OS , et al; PLUS study group. Cost-effectiveness of FDG-PET in staging non-small cell lung cancer: the PLUS study. Eur J Nucl Med Mol Imaging 2003; 30 (11) 1444-1449
  • 10 Lardinois D, Weder W, Hany TF , et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003; 348 (25) 2500-2507
  • 11 Verhagen AF, Bootsma GP, Tjan-Heijnen VC , et al. FDG-PET in staging lung cancer: how does it change the algorithm?. Lung Cancer 2004; 44 (2) 175-181
  • 12 Reed CE, Harpole DH, Posther KE , et al; American College of Surgeons Oncology Group Z0050 trial. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg 2003; 126 (6) 1943-1951
  • 13 Vansteenkiste JF, Stroobants SG, De Leyn PR , et al. Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 1998; 16 (6) 2142-2149
  • 14 Pieterman RM, van Putten JW, Meuzelaar JJ , et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000; 343 (4) 254-261
  • 15 Antoch G, Stattaus J, Nemat AT , et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 2003; 229 (2) 526-533
  • 16 Birim O, Kappetein AP, Stijnen T, Bogers AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg 2005; 79 (1) 375-382
  • 17 Quint LE, Tummala S, Brisson LJ , et al. Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg 1996; 62 (1) 246-250
  • 18 van Tinteren H, Hoekstra OS, Smit EF , et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 2002; 359 (9315): 1388-1393
  • 19 MacManus MP, Hicks RJ, Matthews JP , et al. High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 2001; 50 (2) 287-293
  • 20 de Geus-Oei LF, van der Heijden HF, Visser EP , et al. Chemotherapy response evaluation with 18F-FDG PET in patients with non-small cell lung cancer. J Nucl Med 2007; 48 (10) 1592-1598
  • 21 Lee DH, Kim SK, Lee HY , et al. Early prediction of response to first-line therapy using integrated 18F-FDG PET/CT for patients with advanced/metastatic non-small cell lung cancer. J Thorac Oncol 2009; 4 (7) 816-821
  • 22 Downey RJ, Akhurst T, Gonen M , et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 2004; 22 (16) 3255-3260
  • 23 Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 2005; 130 (1) 151-159
  • 24 Sasaki R, Komaki R, Macapinlac H , et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 2005; 23 (6) 1136-1143
  • 25 Lin Y, Lin WY, Kao CH, Yen KY, Chen SW, Yeh JJ. Prognostic value of preoperative metabolic tumor volumes on PET-CT in predicting disease-free survival of patients with stage I non-small cell lung cancer. Anticancer Res 2012; 32 (11) 5087-5091
  • 26 Eschmann SM, Friedel G, Paulsen F , et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007; 34 (4) 463-471
  • 27 Moon SH, Cho SH, Park LC , et al. Metabolic response evaluated by 18F-FDG PET/CT as a potential screening tool in identifying a subgroup of patients with advanced non-small cell lung cancer for immediate maintenance therapy after first-line chemotherapy. Eur J Nucl Med Mol Imaging 2013; 40 (7) 1005-1013
  • 28 Choi NC, Chun TT, Niemierko A , et al. Potential of 18F-FDG PET toward personalized radiotherapy or chemoradiotherapy in lung cancer. Eur J Nucl Med Mol Imaging 2013; 40 (6) 832-841
  • 29 Aukema TS, Kappers I, Olmos RA , et al; NEL Study Group. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer?. J Nucl Med 2010; 51 (9) 1344-1348
  • 30 Benz MR, Herrmann K, Walter F , et al. (18)F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med 2011; 52 (11) 1684-1689
  • 31 Mileshkin L, Hicks RJ, Hughes BG , et al. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res 2011; 17 (10) 3304-3315
  • 32 Tanvetyanon T, Eikman EA, Sommers E, Robinson L, Boulware D, Bepler G. Computed tomography response, but not positron emission tomography scan response, predicts survival after neoadjuvant chemotherapy for resectable non-small-cell lung cancer. J Clin Oncol 2008; 26 (28) 4610-4616
  • 33 Lee HY, Lee HJ, Kim YT , et al. Value of combined interpretation of computed tomography response and positron emission tomography response for prediction of prognosis after neoadjuvant chemotherapy in non-small cell lung cancer. J Thorac Oncol 2010; 5 (4) 497-503
  • 34 Petersdorf RG. Fever of unknown origin. An old friend revisited. Arch Intern Med 1992; 152 (1) 21-22
  • 35 Durack DT, Street AC. Fever of unknown origin—reexamined and redefined. Curr Clin Top Infect Dis 1991; 11: 35-51
  • 36 Meller J, Sahlmann CO, Scheel AK. 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med 2007; 48 (1) 35-45
  • 37 Bleeker-Rovers CP, Corstens FH, Van Der Meer JW, Oyen WJ. Fever of unknown origin: prospective comparison of diagnostic value of (18)F-FDG PET and (111)In-granulocyte scintigraphy. Eur J Nucl Med Mol Imaging 2004; 31 (9) 1342-1343 , author reply 1344
  • 38 Meller J, Altenvoerde G, Munzel U , et al. Fever of unknown origin: prospective comparison of [18F]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPET. Eur J Nucl Med 2000; 27 (11) 1617-1625
  • 39 Kjaer A, Lebech AM, Eigtved A, Højgaard L. Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy. Eur J Nucl Med Mol Imaging 2004; 31 (5) 622-626
  • 40 Meller J, Sahlmann CO, Gürocak O, Liersch T, Meller B. FDG-PET in patients with fever of unknown origin: the importance of diagnosing large vessel vasculitis. Q J Nucl Med Mol Imaging 2009; 53 (1) 51-63
  • 41 Knockaert DC, Vanderschueren S, Blockmans D. Fever of unknown origin in adults: 40 years on. J Intern Med 2003; 253 (3) 263-275
  • 42 Meller J, Strutz F, Siefker U , et al. Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 2003; 30 (5) 730-736
  • 43 Blockmans D, Coudyzer W, Vanderschueren S , et al. Relationship between fluorodeoxyglucose uptake in the large vessels and late aortic diameter in giant cell arteritis. Rheumatology (Oxford) 2008; 47 (8) 1179-1184
  • 44 Baughman RP, Culver DA, Judson MA. A concise review of pulmonary sarcoidosis. Am J Respir Crit Care Med 2011; 183 (5) 573-581
  • 45 Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med 1999; 160 (2) 736-755
  • 46 Braun JJ, Kessler R, Constantinesco A, Imperiale A. 18F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging 2008; 35 (8) 1537-1543
  • 47 Teirstein AS, Machac J, Almeida O, Lu P, Padilla ML, Iannuzzi MC. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest 2007; 132 (6) 1949-1953
  • 48 Baughman RP, Teirstein AS, Judson MA , et al; Case Control Etiologic Study of Sarcoidosis (ACCESS) research group. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164 (10, Pt 1): 1885-1889
  • 49 Dubrey SW, Falk RH. Diagnosis and management of cardiac sarcoidosis. Prog Cardiovasc Dis 2010; 52 (4) 336-346
  • 50 Di Carli MF, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics 2011; 31 (5) 1239-1254
  • 51 Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG. Assessment of myocardial perfusion and viability by Positron Emission Tomography. Int J Cardiol 2013; 167 (5) 1737-1749
  • 52 Ohira H, Tsujino I, Ishimaru S , et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008; 35 (5) 933-941
  • 53 Ishimaru S, Tsujino I, Takei T , et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 2005; 26 (15) 1538-1543
  • 54 Keijsers RG, Verzijlbergen EJ, van den Bosch JM , et al. 18F-FDG PET as a predictor of pulmonary function in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2011; 28 (2) 123-129
  • 55 American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 2002; 165 (2) 277-304
  • 56 Hashefi M, Curiel R. Future and upcoming non-neoplastic applications of PET/CT imaging. Ann N Y Acad Sci 2011; 1228: 167-174
  • 57 Nusair S, Rubinstein R, Freedman NM , et al. Positron emission tomography in interstitial lung disease. Respirology 2007; 12 (6) 843-847
  • 58 Groves AM, Win T, Screaton NJ , et al. Idiopathic pulmonary fibrosis and diffuse parenchymal lung disease: implications from initial experience with 18F-FDG PET/CT. J Nucl Med 2009; 50 (4) 538-545
  • 59 Klocke FJ, Baird MG, Lorell BH , et al; American College of Cardiology; American Heart Association Task Force on Practice Guidelines; American Society for Nuclear Cardiology. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 2003; 108 (11) 1404-1418
  • 60 Beanlands RS, Chow BJ, Dick A , et al; Canadian Cardiovascular Society; Canadian Association of Radiologists; Canadian Association of Nuclear Medicine; Canadian Nuclear Cardiology Society; Canadian Society of Cardiac Magnetic Resonance. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease—executive summary. Can J Cardiol 2007; 23 (2) 107-119
  • 61 Bateman TM, Heller GV, McGhie AI , et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006; 13 (1) 24-33
  • 62 Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007; 49 (10) 1052-1058
  • 63 Dorbala S, Hachamovitch R, Curillova Z , et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009; 2 (7) 846-854
  • 64 Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 2007; 48 (3) 349-358
  • 65 Brown TL, Merrill J, Volokh L, Bengel FM. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated (82)rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2008; 35 (2) 336-342
  • 66 Yoshinaga K, Chow BJ, Williams K , et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography?. J Am Coll Cardiol 2006; 48 (5) 1029-1039
  • 67 Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007; 32 (7) 375-410
  • 68 Shukla T, Nichol G, Wells G , et al. Does FDG PET-assisted management of patients with left ventricular dysfunction improve quality of life? A substudy of the PARR-2 trial. Can J Cardiol 2012; 28 (1) 54-61
  • 69 Schaefferkoetter J, Casey M, Townsend D, El Fakhri G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 2013; 58 (5) 1465-1478
  • 70 Prieto E, Domínguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JA, Martí-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med 2013; 38 (2) 103-109
  • 71 Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006; 25 (7) 907-921
  • 72 Alessio AM, Stearns CW, Tong S , et al. Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging 2010; 29 (3) 938-949
  • 73 El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 2011; 52 (3) 347-353
  • 74 Surti S, Scheuermann J, El Fakhri G , et al. Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study. J Nucl Med 2011; 52 (5) 712-719
  • 75 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50 (Suppl. 01) 11S-20S
  • 76 Chang G, Chang T, Pan T, Clark Jr JW, Mawlawi OR. Implementation of an automated respiratory amplitude gating technique for PET/CT: clinical evaluation. J Nucl Med 2010; 51 (1) 16-24
  • 77 Nehmeh SA, Erdi YE, Meirelles GS , et al. Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med 2007; 48 (1) 22-26
  • 78 Liu C, Alessio A, Pierce L , et al. Quiescent period respiratory gating for PET/CT. Med Phys 2010; 37 (9) 5037-5043
  • 79 Nehmeh SA, Erdi YE, Pan T , et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004; 31 (12) 3179-3186
  • 80 Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009; 50 (Suppl. 01) 122S-150S
  • 81 Gagel B, Reinartz P, Demirel C , et al. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 2006; 6: 51
  • 82 Cherk MH, Foo SS, Poon AM , et al. Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-Fluoromisonidazole and 18F-FDG PET. J Nucl Med 2006; 47 (12) 1921-1926
  • 83 Dehdashti F, Mintun MA, Lewis JS , et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 2003; 30 (6) 844-850
  • 84 Yamamoto Y, Nishiyama Y, Ishikawa S , et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007; 34 (10) 1610-1616
  • 85 Everitt S, Hicks RJ, Ball D , et al. Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2009; 75 (4) 1098-1104
  • 86 Sohn HJ, Yang YJ, Ryu JS , et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res 2008; 14 (22) 7423-7429
  • 87 Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1.  week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 2007; 34 (9) 1339-1347
  • 88 Scheffler M, Zander T, Nogova L , et al. Prognostic impact of [18F]fluorothymidine and [18F]fluoro-D-glucose baseline uptakes in patients with lung cancer treated first-line with erlotinib. PLoS ONE 2013; 8 (1) e53081
  • 89 Vera P, Bohn P, Edet-Sanson A , et al. Simultaneous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol 2011; 98 (1) 109-116
  • 90 Gottlin EB, , Xiangrong Guan, Pegram C, Cannedy A, Campa MJ, Patz Jr EF. Isolation of novel EGFR-specific VHH domains. J Biomol Screen 2009; 14 (1) 77-85
  • 91 Choyke PL. Pilot study of FPPRGD2 for imaging α(v)β(3) integrin—how integral are integrins?. Radiology 2011; 260 (1) 1-2
  • 92 Beer AJ, Lorenzen S, Metz S , et al. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 2008; 49 (1) 22-29