Klinische Neurophysiologie 2013; 44(04): 235-237
DOI: 10.1055/s-0033-1357212
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Tierexperimentelle Modelle von Erholungsprozessen nach Schlaganfall

Animal Models of Recovery after Stroke
A. R. Luft
1   Klinik für Neurologie, UniversitätsSpital Zürich und Universität Zürich, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
20 December 2013 (online)

Zusammenfassung

Die Erholung funktioneller Defizite nach einem Schlaganfall verläuft teilweise spontan. Sie kann durch spezifische neurorehabilitative Therapien ausgelöst und unterstützt werden. Ein tiefgreifendes mechanistisches Verständnis ist nötig, um existierende Therapien zu optimieren und neue zu entwickeln. Tiermodelle bieten eine wertvolle experimentelle Plattform für mechanistische Hypothesen, haben aber auch entscheidende Nachteile in der Vergleichbarkeit zur Situation am Menschen. Vor- und Nachteile von Tiermodellen werden diskutiert.

Abstract

Recovery of functional deficits after stroke can occur spontaneously and can be supported or initiated by neurorehabilitation therapies. Little is known about the neurophysiological mechanisms these therapies utilize. A thorough mechanistic understanding would be necessary to optimize existing treatments and to develop new therapeutic modalities. Animal models offer a valuable experimental platform to test mechanistic hypotheses but also carry substantial disadvantages in their comparability to the human condition. Pros and cons of animal models are discussed.

 
  • Literatur

  • 1 Nudo RJ. Neural bases of recovery after brain injury. J Commun Disord 2011; 44: 515-520
  • 2 Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nature reviews Neuroscience 2002; 3: 228-236
  • 3 Long D, Young J. Dexamphetamine treatment in stroke. QJM 2003; 96: 673-685
  • 4 Kleim JA, Bruneau R, VandenBerg P et al. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 2003; 25: 789-793
  • 5 Nudo RJ, Friel KM. Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol (Paris) 1999; 155: 713-717
  • 6 Passingham RE, Myers C, Rawlins N et al. Premotor cortex in the rat. Behav Neurosci 1988; 102: 101-109
  • 7 Hall RD, Lindholm EP. Organization of motor and somatosensory cortex in the albino rat. Brain Res 1974; 66: 23-38
  • 8 Napieralski JA, Banks RJ, Chesselet MF. Motor and somatosensory deficits following uni- and bilateral lesions of the cortex induced by aspiration or thermocoagulation in the adult rat. Exp Neurol 1998; 154: 80-88
  • 9 Gharbawie OA, Gonzalez CL, Whishaw IQ. Skilled reaching impairments from the lateral frontal cortex component of middle cerebral artery stroke: a qualitative and quantitative comparison to focal motor cortex lesions in rats. Behav Brain Res 2005; 156: 125-137
  • 10 Buitrago MM, Ringer T, Schulz JB et al. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat. Behav Brain Res 2004; 155: 249-256
  • 11 Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2005; 2: 396-409
  • 12 Schubring-Giese M, Molina-Luna K, Hertler B et al. Speed of motor re-learning after experimental stroke depends on prior skill. Exp Brain Res 2007; 181: 359-365
  • 13 Gonzalez CL, Kolb B. A comparison of different models of stroke on behaviour and brain morphology. Eur J Neurosci 2003; 18: 1950-1962
  • 14 Montoya CP, Campbell-Hope LJ, Pemberton KD et al. The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 1991; 36: 219-228
  • 15 Kleim JA, Boychuk JA, Adkins DL. Rat models of upper extremity impairment in stroke. ILAR J 2007; 48: 374-384
  • 16 Vigaru B, Lambercy O, Graber L et al. A small-scale robotic manipulandum for motor training in stroke rats. IEEE Int Conf Rehabil Robot 2011; 2011: 5975349
  • 17 Vigaru B, Lambercy O, Schubring-Giese M et al. A robotic platform to assess, guide and perturb rat forelimb movements. IEEE Trans Neural Syst Rehabil Eng 2013; in press