Synlett 2014; 25(11): 1621-1625
DOI: 10.1055/s-0033-1341279
letter
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed sp3 C–H Bond Activation from Decarboxylative Cross­Coupling of α,β-Unsaturated Carboxylic Acids with Amides

Jia-Xiang Zhang
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
,
Yan-Jing Wang
b   College of Sciences, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Fax: +86(10)62554670   Email: nxwang@mail.ipc.ac.cn
,
Nai-Xing Wang*
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
,
Wei Zhang
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
,
Cui-Bing Bai
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
,
Yi-He Li
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
,
Jia-Long Wen
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 10 March 2014

Accepted after revision: 07 April 2014

Publication Date:
14 May 2014 (online)


Abstract

Nickel-catalyzed functionalization of C(sp3)–H bonds adjacent to a nitrogen atom in amides through decarboxylative cross-coupling of α,β-unsaturated carboxylic acids is reported. A possible reaction mechanism is proposed that involves radical intermediate species.

Primary Data

 
  • References and Notes

    • 1a Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 1b Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 1c Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2006; 45: 1683
    • 2a Chatani N, Asaumi T, Ikeda T, Yorimitsu S, Ishii Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2000; 122: 12882
    • 2b Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
    • 3a Dangel BD, Johnson JA, Sames D. J. Am. Chem. Soc. 2001; 123: 8149
    • 3b Sezen B, Franz R, Sames D. J. Am. Chem. Soc. 2002; 124: 13372
    • 3c DeBoef B, Pastine SJ, Sames D. J. Am. Chem. Soc. 2004; 126: 6556
    • 3d Sezen B, Sames D. J. Am. Chem. Soc. 2005; 127: 5284
    • 4a Zhang Y.-H, Li C.-J. Angew. Chem. Int. Ed. 2006; 45: 1949
    • 4b Li Z.-P, Yu R, Li H.-J. Angew. Chem. Int. Ed. 2008; 47: 7497
    • 4c Suematsu H, Katsuki T. J. Am. Chem. Soc. 2009; 131: 14218
    • 4d Richter H, Mancheño OG. Eur. J. Org. Chem. 2010; 4460
    • 5a Tsuchikama K, Kasagawa M, Endo K, Shibata T. Org. Lett. 2009; 11: 1821
    • 5b Chu L.-L, Zhang X.-G, Qing F.-L. Org. Lett. 2009; 11: 2197
    • 6a Evans DA, Morrissey MM, Dorow RL. J. Am. Chem. Soc. 1985; 107: 4348
    • 6b Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
    • 6c Burger EC, Tunge JA. Org. Lett. 2004; 6: 4113
    • 6d Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
    • 6e Gooßen LJ, Rudolphi F, Oppel C, Rodríguez N. Angew. Chem. Int. Ed. 2008; 47: 3043
    • 6f Shang R, Fu Y, Li J.-B, Zhang S.-L, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 5738
    • 6g Zhang W.-W, Zhang X.-G, Li J.-H. J. Org. Chem. 2010; 75: 5259
    • 7a Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005; 127: 10323
    • 7b You S.-L, Dai L.-X. Angew. Chem. 2006; 118: 5372
    • 7c Lalic G, Aloise AD, Shair MD. J. Am. Chem. Soc. 2003; 125: 2852
    • 7d Lou S, Westbrook JA, Schaus SE. J. Am. Chem. Soc. 2004; 126: 11440
    • 8a Yang Y.-Z, Cheng K, Zhang Y.-H. Org. Lett. 2009; 11: 5606
    • 8b Wei Y, Kan J, Wang M, Su W.-P, Hong M.-C. Org. Lett. 2009; 11: 3346
    • 8c Zhang X.-G, Fan S.-L, He C.-Y, Wan X.-L, Min Q.-Q, Yang J, Jiang Z.-X. J. Am. Chem. Soc. 2010; 132: 4506
    • 8d Gandeepan P, Parthasarathy K, Cheng C.-H. J. Am. Chem. Soc. 2010; 132: 8569
    • 8e Yamashita M, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 2337
    • 8f Fukutani T, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 5198
    • 8g Matsushita M, Kamata K, Yamaguchi K, Mizuno N. J. Am. Chem. Soc. 2005; 127: 6632
    • 8h Deng G.-J, Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 6278
    • 9a Gao YX, Wang G, Chen L, Xu PX, Zhao YF, Zhou YB, Han L.-B. J. Am. Chem. Soc. 2009; 131: 7956
    • 9b Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2009; 131: 17052
    • 9c Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
    • 9d Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
    • 9e Cheng K, Huang LH, Zhang YH. Org. Lett. 2009; 11: 2908
    • 9f Huang LH, Cheng K, Yao BB, Zhao JL, Zhang YH. Synthesis 2009; 3504
    • 9g Sun HY, Zhang YH, Guo FF, Zha ZG, Wang ZY. J. Org. Chem. 2012; 77: 3563
    • 10a Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505
    • 10b Guo X.-W, Yu R, Li H.-J, Li Z. J. Am. Chem. Soc. 2009; 131: 17387
    • 10c Volla CM. R, Vogel P. Org. Lett. 2009; 11: 1701
    • 10d Ohta M, Quick MP, Yamaguchi J, Wünsch B, Itami K. Chem. Asian J. 2009; 4: 1416
    • 11a Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 11b Yin W.-Y, He C, Chen M, Zhang H, Lei A.-W. Org. Lett. 2009; 11: 709
    • 11c Hachiya H, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
    • 11d Oertel AM, Ritleng V, Chetcuti MJ, Veiros LF. J. Am. Chem. Soc. 2010; 132: 13588
    • 11e Liu D, Liu C, Li H, Lei A.-W. Angew. Chem. Int. Ed. 2013; 52: 4453
    • 12a Tang R.-Y, Xie Y.-X, Xie Y.-L, Xiang J.-N, Li J.-H. Chem. Commun. 2011; 47: 12867
    • 12b Shepherd NE, Tanabe H, Xu Y.-J, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 3666
    • 12c Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 12d Dai C.-H, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
    • 12e Li G.-C, Qian S.-Y, Wang C.-X, You J.-S. Angew. Chem. Int. Ed. 2013; 52: 7837
    • 13a Li H.-M, Xie J, Xue Q.-C, Cheng Y.-X, Zhu C.-J. Tetrahedron Lett. 2012; 53: 6479
    • 13b Xu K, Hu Y.-B, Zhang S, Zha Z.-G, Wang Z.-Y. Chem. Eur. J. 2012; 18: 9793
    • 13c Wang G, Yu Q.-Y, Chen S.-Y, Yu X.-Q. Org. Biomol. Chem. 2014; 12: 414
    • 14a Deng S.-J, Taunton J. J. Am. Chem. Soc. 2002; 124: 916
    • 14b Ohnishi Y, Sakai M, Nakao S, Kitagawa O. Org. Lett. 2011; 13: 2840
    • 15a Li X.-B, Curran DP. Org. Lett. 2010; 12: 612
    • 15b Hu DX, Grice P, Ley SV. J. Org. Chem. 2012; 77: 5198
    • 16a Zhao LX, Shang XJ, Cui ZL, Liu ZQ. Org. Lett. 2012; 14: 3219
    • 16b Cui ZL, Shang XJ, Shao XF, Liu ZQ. Chem. Sci. 2012; 3: 2853
  • 17 Russell GA, Ngoviwatchai P. J. Org. Chem. 1989; 54: 1836
    • 18a Gong J, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 4486
    • 18b Xiang J, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 11986
    • 18c Xiang J, Jiang W, Gong J, Fuchs PL. J. Am. Chem. Soc. 1997; 119: 4123
    • 18d Li Z, Jiang YY, Fu Y. Chem. Eur. J. 2012; 18: 4345
  • 19 Typical Procedure: To a mixture of cinnamic acid (0.148 g, 1 mmol), Ni(OAc)2·4H2O (25 mg, 0.1 mmol), and N,N-dimethylacetamide (2 mL), tert-butyl hydroperoxide (0.39 g, 3 mmol, 70% in water) was added at r.t. dropwise. The resulting mixture was heated to 100 °C for 16 h, then the mixture was added to dichloromethane (40 mL) and washed with water and saturated brine. The organic solution was dried with anhydrous magnesium sulfate and the desired product was separated on a silica gel column (petroleum ether–EtOAc).