Synlett, Table of Contents Synlett 2014; 25(10): 1385-1390DOI: 10.1055/s-0033-1341277 letter © Georg Thieme Verlag Stuttgart · New YorkA General and Highly Efficient Protocol for the Synthesis of Chalcogenoacetylenes by Copper(I)-Terpyridine Catalyst Authors Author Affiliations Barahman Movassagh* Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran Email: bmovass1178@yahoo.com Email: momeni@kntu.ac.ir Ali Yousefi Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran Email: bmovass1178@yahoo.com Email: momeni@kntu.ac.ir Badri Zaman Momeni* Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran Email: bmovass1178@yahoo.com Email: momeni@kntu.ac.ir Sepideh Heydari Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran Email: bmovass1178@yahoo.com Email: momeni@kntu.ac.ir Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract A highly efficient copper-catalyzed Csp–X (X = S, Se, Te) bond-forming reaction of terminal alkynes and diorganyl dichalcogenides has been developed. This transformation was realized through the use of copper(I) iodide as a catalyst, 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine as a ligand, and K3PO4 as a base. A variety of the functionalized substrates were found to react under these reaction conditions to provide products in good to excellent yields. Key words Key wordsalkynyl chalcogenides - diorganyl dichalcogenides - terminal alkynes - terpyridines - copper-catalyzed reaction Full Text References References and Notes 1a Organoselenium Chemistry – Modern Developments in Organic Synthesis. In Topics in Current Chemistry. Vol. 208. Wirth T. Springer Verlag; Berlin: 2000 1b McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239 1c Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342 2a Gangjee A, Zeng Y, Tolreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046 2b Faucher A.-M, White PW, Brochu C, Maitre CG, Rancourt J, Fazal G. J. Med. Chem. 2004; 47: 18 2c Lin C.-H, Wang Y.-J, Lee C.-F. Eur. J. Org. Chem. 2010; 4368 3a Organoselenium Chemistry. In Topics in Current Chemistry. Wirth T. Springer; Heidelberg: 2000: 208 3b Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915 3c Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732 3d Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 121: 8409 3e Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596 3f Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177 3g Godoi M, Paixão MW, Braga AL. Dalton Trans. 2011; 40: 11347 4a Stadtman TC. Annu. Rev. Biochem. 1980; 49: 93 4b Geiger PG, Lin F, Girotti AW. Free Radical Biol. Med. 1993; 14: 251 4c Krief A. Janssen Chim. Acta 1993; 11: 10 4d Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255 4e Mugesh G, du Mont WW, Sies H. Chem. Rev. 2001; 101: 2125 4f Krehl S, Loewinger M, Florian S, Kipp AP, Banning A, Wessjohann LA, Brauer MN, Iori R, Esworthy RS, Chu F.-F, Brigelius-Flohé R. Carcinogenesis 2012; 33: 620 4g Wessjohann LA, Schneider A, Abbas M, Brandt W. Biol. Chem. 2007; 388: 997 4h Mecklenburg S, Shaaban S, Ba LA, Burkholz T, Schneider T, Diesel B, Kiemer AK, Röseler A, Becker K, Reichrath J, Stark A, Tilgen W, Abbas M, Wessjohann LA, Sasse F, Jacob C. Org. Biomol. Chem. 2009; 7: 4753 4i Roman M, Jitaru P, Barbante C. Metallomics 2014; 6: 25 5a Crouch DJ, Skabara PJ, Lohr JE, McDouall JJ. W, Heeney M, McCulloch I, Sparrowe D, Shkunov M, Coles SJ, Horton PN, Hursthouse MB. Chem. Mater. 2005; 17: 6567 5b Petrov VF. Mol. Cryst. Liq. Cryst. 2005; 442: 51 5c Tavares A, Schneider PH, Merlo AA. Eur. J. Org. Chem. 2009; 889 5d Shimizu Y, Oikawa K, Nakayama KI, Guillon D. J. Mater. Chem. 2007; 17: 4223 5e Passo JA, Vilela GD, Schneider PH, Ritter OM. S, Merlo AA. Liq. Cryst. 2008; 35: 833 5f Lepeltier M, Hiltz J, Lockwood T, Belanger-Gariepy F, Perepichka DF. J. Mater. Chem. 2009; 19: 5167 6a Magriotis PA, Brown JT, Scott ME. Tetrahedron Lett. 1991; 32: 5047 6b Comasseto JV. J. Organomet. Chem. 1983; 253: 131 6c Braga AL, Reckziegel A, Silveira CC, Comasseto JV. Synth. Commun. 1994; 24: 1165 6d Braga AL, Comasseto JV, Petragnani N. Synthesis 1984; 240 6e Ma Y, Qian C. Tetrahedron Lett. 2000; 41: 945 7a Petrov M, Radchenko SI, Kupin VS, Petrov AA. J. Org. Chem. (USSR) 1973; 9: 683 7b Rampon DS, Rodembusch FS, Schneider JM. F. M, Bechtold IH, Gonçalves PF. B, Merlo AA, Schneider PH. J. Mater. Chem. 2010; 20: 715 7c Rampon DS, Rodembusch FS, Lourega R, Gonçalves PF. B, Merlo AA, Schneider PH. J. Braz. Chem. Soc. 2010; 21: 2100 8 Comasseto JV, Menezes PH, Stefani HA, Zeni G, Braga AL. Tetrahedron 1996; 52: 9687 9 Yang DY, Huang XJ. J. Organomet. Chem. 1997; 543: 165 10 Tingolli M, Tiecco M, Testaferri L, Temperini A, Pelizzi G, Bacchi A. Tetrahedron 1995; 51: 4691 11 Huang X, Ma Y. Synthesis 1997; 312 12 Zhu LS, Huang ZZ, Huang XJ. J. Chem. Res., Symop. 1996; 112 13 Kataoka T, Watanabe S, Yamamoto K. Tetrahedron Lett. 1999; 40: 931 14 Tiecco M, Testaferri L, Temperini A, Bagnoli L, Marini F, Santi C, Terlizzi R. Eur. J. Org. Chem. 2004; 3447 15a Bouillon JP, Musyanovich R, Portella C, Shermolovich Y. Eur. J. Org. Chem. 2001; 3625 15b Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2001; 3: 91 16a Ahammed S, Bhadra S, Kundu D, Sreedhar B, Ranu BC. Tetrahedron 2012; 68: 10542 16b Sharma A, Schwab RS, Braga AL, Barcellos T, Paixão MW. Tetrahedron Lett. 2008; 49: 5172 16c Godoi M, Liz DG, Ricardo EW, Rocha MS. T, Azeredo JB, Braga AL. Tetrahedron 2014; 70: 3349 16d Braga AL, Silveira CC, Reckziegel A, Menezes PH. Tetrahedron Lett. 1993; 34: 8041 16e Bieber LW, da Silva MF, Menezes PH. Tetrahedron Lett. 2004; 45: 2735 16f Godoi M, Richardo EW, Frizon TE, Rocha MS. T, Singh D, Paixão MW, Braga AL. Tetrahedron 2012; 68: 10426 16g Cohen RJ, Fox DL, Salvatore RN. J. Org. Chem. 2004; 69: 4265 16h Gendre F, Diaz P. Tetrahedron Lett. 2000; 41: 5193 17 Movassagh B, Navidi M. Chin. Chem. Lett. 2012; 23: 1035 18 Abramov MA, Dehaen W, D’hooge B, Petrov ML, Smeets S, Toppet S, Voets M. Tetrahedron 2000; 56: 3933 19 Das JP, Roy UK, Roy S. Organometallics 2005; 24: 6136 20 Takimiya K, Jigami T, Kawashima M, Kodani M, Aso Y, Otsubo T. J. Org. Chem. 2002; 67: 4218 21 Werz BD, Gleiter R, Rominger F. J. Org. Chem. 2002; 67: 4290 22a Back TG, Bethell RJ, Parvez M, Wehrli D. J. Org. Chem. 1998; 63: 7908 22b Rampon DS, Giovenardi R, Silva TL, Rambo RS, Merlo AA, Schneider PH. Eur. J. Org. Chem. 2011; 7066 23 Cook DJ, Hill AF, Wilson DJ. J. Chem. Soc., Dalton Trans. 1998; 1171 24 Mohammadi E, Movassagh B. Tetrahedron Lett. 2014; 55: 1613 25 Lara RG, Rosa PC, Soares LK, Silva MS, Jacob RG, Perin G. Tetrahedron 2012; 68: 10414 26 Braga AL, Reckziegel A, Menezes PH, Stefani HA. Tetrahedron Lett. 1993; 34: 393 27a Gong H, Gagné MR. J. Am. Chem. Soc. 2008; 130: 12177 27b Joshi-Pangu A, Ganesh M, Biscoe MR. Org. Lett. 2011; 13: 1218 27c Aoyama N, Hamada T, Manabe K, Kobayashi S. J. Org. Chem. 2003; 68: 7329 28 Zhao LX, Moon YS, Basnet A, Kim E.-K, Jahng Y, Park JG, Jeong TC, Cho W.-J, Choi S.-U, Lee S.-Y, Lee C.-S, Lee ES. Bioorg. Med. Chem. Lett. 2004; 14: 1333 29 Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature (London) 2002; 417: 722 30 Wild A, Winter A, Schlütter F, Schubert US. Chem. Soc. Rev. 2011; 40: 1459 31 Winter A, Hager MD, Newkome GR, Schubert US. Adv. Mater. 2011; 23: 5728 32 Wang J, Hanan GS. Synlett 2005; 1251 33 General Procedure To the suspension of K3PO4 (2.0 mmol) in dry DMSO (4 mL) diorganyl dichalcogenide (1.0 mmol) and terminal acetylene (2.0 mmol) were added, and the mixture was stirred at 50 °C. Then, CuI (1.0 mol%) and Mtpy (1.0 mol%) were added to the above mixture, and the reaction mixture was stirred at that temperature under aerobic conditions. The progress of the reaction was monitored by TLC. When the reaction was complete, the mixture was poured into H2O (15 mL) and extracted with EtOAc (2 × 15 mL). The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to give the crude product which was further purified by preparative TLC (silica gel, n-hexane–EtOAc = 9:1). The identity and purity of the products were confirmed by IR, 1H NMR, and 13C NMR spectroscopic analysis. Phenyl(2-phenylethynyl)selane (3a) Yellow oil. IR (neat): ν = 2200 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.61 (d, J = 9 Hz, 2 H), 7.50–7.51 (m, 2 H), 7.32–7.37 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 131.7, 129.5, 129.0, 128.9, 128.6, 128.3, 127.1, 123.2, 102.9, 69.2. (4-Methoxyphenyl)(2-phenylethynyl)selane (3b) Yellow oil. IR (neat): ν = 2208 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (d, J = 8.8 Hz, 2 H), 7.34–7.48 (m, 5 H), 6.88 (d, J = 8.8 Hz, 2 H), 3.82 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 159.7, 133.7, 131.9, 128.6, 128.1, 121.1, 120.2, 115.0, 101.1, 70.4, 55.3. Benzyl(2-phenylethynyl)selane (3e) Yellow oil. IR (neat): ν = 2156 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.22–7.42 (m, 10 H), 3.74 (s, 2 H). 13C NMR (75 MHz, CDCl3): δ = 139.2, 137.5, 132.4, 131.4, 129.1, 128.2, 126.7, 123.5, 101.3, 68.1, 32.7. Methyl(2-phenylethynyl)selane (3f) Orange oil. IR (neat): ν = 2201 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.96–7.99 (m, 2 H), 7.86–7.89 (m, 3 H), 2.28 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 135.2, 129.99, 129.97, 125.1, 103.3, 73.2, 8.7. (Hex-1-ynyl)(phenyl)selane (3g) Yellow oil. IR (neat): ν = 2197 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (d, J = 8.2 Hz, 2 H), 7.21–7.31 (m, 3 H), 2.47 (t, J = 6.9 Hz, 2 H), 1.61 (quin, J = 6.8 Hz, 2 H), 1.47 (sext, J = 7.2 Hz, 2 H), 0.94 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 133.0, 129.4, 128.6, 126.7, 104.7, 57.3, 30.8, 21.98, 20.3, 14.1, 13.6. 3-(Phenylselanyl)prop-2-yn-1-ol (3i) Yellow oil. IR (neat): ν = 3339, 3059 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.63 (m, 2 H), 7.26–7.37 (m, 3 H), 4.15 (s, 2 H), 1.96 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 132.3, 130.3, 129.4, 127.6, 101.5, 67.5, 64.9. Phenyl(2-phenylethynyl)sulfane (3k) Yellow oil. IR (neat): ν = 2215 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.64 (m, 2 H), 7.31–7.41 (m, 2 H), 7.18–7.29 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 134.7, 130.6, 129.37, 129.30, 129.1, 128.9, 126.7, 125.9, 98.5, 70.2. (Oct-1-ynyl)(phenyl)sulfane (3l) Yellow oil. IR (neat): ν = 2220 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (d, J = 8.6 Hz, 2 H), 7.27–7.37 (m, 3 H), 2.26 (t, J = 7.2 Hz, 2 H), 1.51 (quin, J = 7.4 Hz, 2 H), 1.21–1.30 (m, 6 H), 0.86 (t, J = 6.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 130.5, 129.7, 129.1, 126.7, 106.1, 61.7, 37.1, 31.5, 28.5, 22.5, 14.1.Ethyl 3-(Phenylthio)propiolate (3n) Colorless oil. IR (neat): ν = 1678 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.30–7.38 (m, 3 H), 7.21–7.27 (m, 2 H), 4.55 (q, J = 6.9 Hz, 2 H), 1.54 (t, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 150.2, 130.4, 129.3, 128.1, 75.7, 74.1, 60.9, 15.1. (2-Phenylethynyl)(p-tolyl)tellane (3p) Orange oil. IR (neat): ν = 2210 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.27–7.59 (m, 9 H), 2.44 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 131.7, 129.5, 129.1, 128.8, 128.4, 128.2, 127.0, 123.1, 100.8, 64.3, 22.9. Ethyl 3-(Phenyltellanyl)propiolate (3r) Pale yellow oil. IR (neat): ν = 1674 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.35–7.36 (m, 5 H), 4.27 (q, J = 7.2 Hz, 2 H), 1.33 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 149.9, 133.3, 129.3, 128.2, 74.1, 73.0, 60.5, 14.3. Supplementary Material Supplementary Material Supporting Information (PDF) (opens in new window)