Synthesis 2014; 46(12): 1593-1602
DOI: 10.1055/s-0033-1341084
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Pd/Al(OH)3 Nanoparticle Catalyst for Suzuki Coupling Reactions of Aryl Halides

Xing Li*
Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, P. R. of China   Fax: +86(351)6111165   Email: weiwenlong@tyut.edu.cn   Email: lixing@tyut.edu.cn
,
Wenwen Chen
Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, P. R. of China   Fax: +86(351)6111165   Email: weiwenlong@tyut.edu.cn   Email: lixing@tyut.edu.cn
,
Honghong Chang
Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, P. R. of China   Fax: +86(351)6111165   Email: weiwenlong@tyut.edu.cn   Email: lixing@tyut.edu.cn
,
Zhongqi Shao
Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, P. R. of China   Fax: +86(351)6111165   Email: weiwenlong@tyut.edu.cn   Email: lixing@tyut.edu.cn
,
Wenlong Wei*
Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, P. R. of China   Fax: +86(351)6111165   Email: weiwenlong@tyut.edu.cn   Email: lixing@tyut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 December 2013

Accepted after revision: 11 March 2014

Publication Date:
10 April 2014 (online)


Abstract

A high-performance palladium-based Pd/Al(OH)3 catalyst has been prepared by the one-pot three-component method. It was found that this ‘ligandless’ Pd/Al(OH)3 catalyst showed remarkable reactivity and gave excellent yields (up to 99%) towards the condensation of aryl bromides with various arylboronic acids under mild conditions, and afforded good yields of the coupling products (up to 97%) with most aryl chlorides in two different catalytic systems. Furthermore, this catalyst could be easily recovered through filtration and reused for 8 cycles without significant loss of the yield.

Supporting Information

 
  • References

    • 1a Suzuki A. J. Organomet. Chem. 2002; 653: 83
    • 1b Phan NT. S, Sluys MV. D, Jones CW. Adv. Synth. Catal. 2006; 348: 609
    • 1c Yin LX, Jürgen L. Chem. Rev. 2007; 107: 133
    • 1d Shen XQ, Jones GO, Watson DA, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 11278
    • 2a Bhayana B, Fors BP, Buchwald SL. Org. Lett. 2009; 11: 3954
    • 2b Jin MJ, Lee DH. Angew. Chem. Int. Ed. 2010; 49: 1119
    • 2c Fujihara T, Yoshida S, Terao J, Tsuji Y. Org. Lett. 2009; 11: 2121
    • 2d Ackermann L, Potukuchi HK, Althammer A, Born R, Mayer P. Org. Lett. 2010; 12: 1004
    • 2e Bellina F, Carpita A, Rossi R. Synthesis 2004; 2419
    • 3a Littke AF, Dai CY, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
    • 3b Leadbeater NE, Marco M. Org. Lett. 2002; 4: 2973
    • 3c Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
    • 3d Navarro O, Kelly III RA, Nolan SP. J. Am. Chem. Soc. 2003; 125: 16194
    • 3e Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073
    • 3f Kondolff I, Doucet H, Santelli M. Synlett 2005; 2057
    • 4a Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 4b Fu GC. Acc. Chem. Res. 2008; 41: 1555
    • 4c Billingsley KL, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 4695
    • 4d Tang WJ, Capacci AG, Wei XD, Li WJ, White A, Patel ND, Savoie J, Gao JJ, Rodriguez S, Qu B, Haddad N, Lu BZ, Krishnamurthy D, Yee NK, Senanayake CH. Angew. Chem. Int. Ed. 2010; 49: 5879
    • 5a Kim SW, Kim M, Lee WY, Hyeon T. J. Am. Chem. Soc. 2002; 124: 7642
    • 5b Zhang ZH, Wang ZY. J. Org. Chem. 2006; 71: 7485
    • 5c Lv GH, Mai WP, Jin RZ, Gao LX. Synlett 2008; 1418
    • 5d Reetz MT, Westermann E. Angew. Chem. Int. Ed. 2000; 39: 165
    • 5e Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpin FX. Adv. Synth. Catal. 2010; 352: 33
    • 5f Costa NJ. S, Kiyohara PK, Monteiro AL, Coppel Y, Philippot K, Rossi LM. J. Catal. 2010; 276: 382
    • 5g Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J. Am. Chem. Soc. 2009; 131: 8262
    • 5h Tandukar S, Sen A. J. Mol. Catal. A: Chem. 2007; 268: 112
    • 5i Yuan BZ, Pan YY, Li YW, Yin BL, Jiang HF. Angew. Chem. Int. Ed. 2010; 49: 4054
    • 5j Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL. Angew. Chem. Int. Ed. 2007; 46: 7251
    • 5k Kogan V, Aizenshtat Z, Biro RP, Neumann R. Org. Lett. 2002; 4: 3529
    • 5l Wu L, Li BL, Huang YY, Zhou HF, He YM, Fan QH. Org. Lett. 2006; 8: 3605
    • 5m Mandali PK, Chand DK. Catal. Commun. 2013; 31: 16
    • 5n Senapati KK, Roy S, Borgohain C, Phukan P. J. Mol. Catal. A: Chem. 2012; 352: 128
    • 5o Singh AS, Patil UB, Nagarkar JM. Catal. Commun. 2013; 35: 11
    • 5p Das P, Sharma D, Shil AK, Kumari A. Tetrahedron Lett. 2011; 52: 1176
    • 5q Samarasimhareddy M, Prabhu G, Vishwanatha TM, Sureshbabu VV. Synthesis 2013; 45: 1201
    • 5r Kantam ML, Subhas MS, Roy S, Roy M. Synlett 2006; 633
    • 5s Pérez-Lorenzo M. J. Phys. Chem. Lett. 2012; 3: 167
  • 6 Kwon MS, Kim N, Park CM, Lee JS, Kang KY, Park J. Org. Lett. 2005; 7: 1077
  • 7 Li X, Wang LC, Chang HH, Zhang CX, Wei WL. Appl. Catal. A: Gen. 2013; 462-463: 15
  • 8 Pd(PPh3)4 (2 mol%) as a catalyst gave 23% yield after 32 h.
  • 9 To evaluate and compare the catalytic activity of the novel Pd/Al(OH)3, Al2O3-supported Pd/γ-Al2O3 nanoparticle catalyst was used for the Suzuki coupling reaction between bromobenzene and phenylboronic acid under the same conditions (see Table 1, entry 9). The result showed that 93% yield was obtained with this Pd/γ-Al2O3 catalyst, which demonstrated that the Pd/Al(OH)3 exhibited the same excellent catalytic activity (for the preparation of Pd/γ-Al2O3, see Supporting Information)
  • 10 The conditions were 0.5 mol% Pd catalyst 1 in K2CO3/PEG-400/I2 system at 140 °C (see Table 6 in Supporting Information), and the results are summarized in Table 4