Synthesis 2014; 46(06): 740-747
DOI: 10.1055/s-0033-1340705
feature article
© Georg Thieme Verlag Stuttgart · New York

Brominations with Pr4NBr9 as a Solid Reagent with High Reactivity and Selectivity­

Thorsten M. Beck
a   Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Alberstr. 21, 79104 Freiburg, Germany   Fax: +49(761)2038715   Email: jan.streuff@ocbc.uni-freiburg.de
,
Heike Haller
b   Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Alberstr. 21, 79104 Freiburg, Germany
,
Jan Streuff*
a   Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Alberstr. 21, 79104 Freiburg, Germany   Fax: +49(761)2038715   Email: jan.streuff@ocbc.uni-freiburg.de
,
Sebastian Riedel*
b   Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Alberstr. 21, 79104 Freiburg, Germany
› Author Affiliations
Further Information

Publication History

Received: 22 October 2013

Accepted after revision: 12 January 2014

Publication Date:
13 February 2014 (online)


Abstract

Tetrapropylammonium nonabromide (Pr4NBr9) is introduced as a room-temperature solid reagent for rapid bromination reactions of various substrates. The reagent exhibits reactivity similar to that of elemental bromine, but shows higher selectivity and it is easier and safer to store and to handle.

Supporting Information

 
  • References

  • 1 Metal-Catalyzed Cross-Coupling Reactions . 2nd ed.; de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
  • 2 Comprehensive Organic Transformations . 2nd ed.; Larock RC. Wiley-VCH; Weinheim: 1999
    • 3a Buckles RE, Popov AI, Zelezny WF, Smith RJ. J. Am. Chem. Soc. 1951; 73: 4525
    • 3b Buckles RE, Harris L. J. Am. Chem. Soc. 1957; 79: 886
    • 4a Trowbridge PF, Diehl OC. J. Am. Chem. Soc. 1897; 19: 558
    • 4b Djerassi C, Scholz CR. J. Am. Chem. Soc. 1948; 70: 417
    • 4c Merker PC, Vona JA. J. Chem. Educ. 1949; 26: 613
    • 5a Chiappe C, Capraro D, Conte V, Pieraccini D. Org. Lett. 2001; 3: 1061
    • 5b Chiappe C, Leandri E, Pieraccini D. Chem. Commun. 2004; 2536
    • 5c Salazar J, Dorta R. Synlett 2004; 1318
    • 5d Kavala V, Naik S, Patel BK. J. Org. Chem. 2005; 70: 4267
    • 5e Borikar SP, Daniel T, Paul V. Tetrahedron Lett. 2009; 50: 1007
  • 6 Djerassi C. Chem. Rev. 1948; 43: 271
    • 7a Eguchi H, Kawaguchi H, Yoshinaga S, Nishida A, Nishiguchi T, Fujisaki S. Bull. Chem. Soc. Jpn. 1994; 67: 1918
    • 7b Chassaing C, Haudrechy A, Langlois Y. Tetrahedron Lett. 1997; 38: 4415
  • 8 Magen S, Oren J, Fuchs B. Tetrahedron Lett. 1984; 25: 3369
    • 9a Omura K. J. Org. Chem. 1996; 61: 2006
    • 9b Bertelsen S, Halland N, Bachmann S, Marigo M, Braunton A, Jørgensen KA. Chem. Commun. 2005; 4821

      For example, see:
    • 10a Barhate NB, Gajare AS, Wakharkar RD, Bedekar AV. Tetrahedron 1999; 55: 11127
    • 10b Kim E.-H, Koo B.-S, Song C.-E, Lee K.-J. Synth. Commun. 2001; 31: 3627
    • 10c Nair V, Panicker SB, Augustine A, George TG, Thomas S, Vairamani M. Tetrahedron 2001; 57: 7417
    • 10d Narender N, Mohan KV. V. K, Kulkarni SJ, Raghavan KV. J. Chem. Res. 2003; 597
    • 10e Zhang G, Liu R, Xu Q, Ma L, Liang X. Adv. Synth. Catal. 2006; 348: 862
    • 10f Terent’ev AO, Khodykin SV, Krylov IB, Ogibin YN, Nikishin GI. Synthesis 2006; 1087
    • 10g Tajik H, Mohammadpoor-Baltork I, Albadi J. Synth. Commun. 2007; 37: 323
    • 10h Das B, Srinivas Y, Sudhakar C, Damodar K, Narender R. Synth. Commun. 2008; 39: 220
    • 10i Firouzabadi H, Iranpoor N, Kazemi S. Can. J. Chem. 2009; 87: 1675
    • 10j Kumar MA, Rohitha CN, Kulkarni SJ, Narender N. Synthesis 2010; 1629
    • 10k Macharla AK, Nappunni RC, Marri MR, Peraka S, Nama N. Tetrahedron Lett. 2012; 53: 191
    • 10l Yousefi-Seyf J, Tajeian K, Kolvari E, Koukabi N, Khazaei A, Zolfigol MA. Bull. Korean Chem. Soc. 2012; 33: 2619
    • 10m Prebil R, Laali KK, Stavber S. Org. Lett. 2013; 15: 2108
  • 11 Haller H, Ellwanger M, Higelin A, Riedel S. Angew. Chem. Int. Ed. 2011; 50: 11528
  • 12 Chattaway FD, Hoyle G. J. Chem. Soc., Trans. 1923; 123: 654
  • 13 Farkas L, Schächter O. J. Am. Chem. Soc. 1949; 71: 2252
    • 14a Strømme KO. Acta Chem. Scand. 1959; 13: 2089
    • 14b Kalina DW, Lyding JW, Ratajack MT, Kannewurf CR, Marks TJ. J. Am. Chem. Soc. 1980; 102: 7854
    • 14c Cunningham CW, Burns GR, McKee V. Inorg. Chim. Acta 1990; 167: 135
    • 14d Robertson KN, Bakshi PK, Cameron TS, Knop O. Z. Anorg. Allg. Chem. 1997; 623: 104
    • 14e Chen X, Rickard MA, Hull JW. Jr, Zheng C, Leugers A, Simoncic P. Inorg. Chem. 2010; 49: 8684
    • 14f Wolff M, Meyer J, Feldmann C. Angew. Chem. Int. Ed. 2011; 50: 4970
    • 14g Wolff M, Okrut A, Feldmann C. Inorg. Chem. 2011; 50: 11683
    • 14h Vitske V, Herrmann H, Enders M, Kaifer E, Himmel H.-J. Chem. Eur. J. 2012; 18: 14108
    • 14i Haller H, Schröder J, Riedel S. Angew. Chem. Int. Ed. 2013; 52: 4937
    • 14j Haller H, Hog M, Scholz F, Scherer H, Krossing I, Riedel S. Z. Naturforsch. 2013; 68b, 1103
    • 14k Haller H, Ellwanger M, Higelin A, Riedel S. Z. Anorg. Allg. Chem. 2012; 638: 553
    • 15a Bellucci G, Bianchini R, Ambrosetti R, Ingrosso G. J. Org. Chem. 1985; 50: 3313
    • 15b Bellucci G, Bianchini R, Vecchiani S. J. Org. Chem. 1986; 51: 4224
    • 15c Bellucci G, Chiappe C, Moro GL. J. Org. Chem. 1997; 62: 3176
  • 16 Ruasse M.-F, Motallebi S, Galland B. J. Am. Chem. Soc. 1991; 113: 3440
  • 17 See the Supporting Information.
  • 18 Put J, Maes G, Huyskens P, Zeegers-Huyskens T. Spectrochim. Acta 1981; 37A, 699
  • 19 Trace amounts of Br2 originating from the small excess of Br2 used in the preparation became visible upon dissolving the material in CH2Cl2. However, this was removed by crystallization and the resulting nonabromide material showed identical bromination performance.
  • 20 Pincock JA, Yates K. Can. J. Chem. 1970; 48: 3332
  • 21 Weber FG. Tetrahedron 1969; 25: 4283
  • 22 Berthelot J, Benammar Y, Lange C. Tetrahedron Lett. 1991; 32: 4135
  • 23 Tanaka K, Shiraishi R, Toda F. J. Chem. Soc., Perkin Trans. 1 1999; 3069
  • 24 Ma X, Li W, Li X, Tao X, Fan W, Xie X, Ayad T, Ratovelomanana-Vidal V, Zhang Z. Chem. Commun. 2012; 48: 5352
  • 25 Zysman-Colman E, Arias K, Siegel JS. Can. J. Chem. 2009; 87: 440
  • 26 Chhattise PK, Ramaswamy AV, Waghmode SB. Tetrahedron Lett. 2008; 49: 189
  • 27 Oberhauser T. J. Org. Chem. 1997; 62: 4504
  • 28 Kikushima K, Moriuchi T, Hirao T. Tetrahedron Lett. 2010; 51: 340
  • 29 Liu J, Li W, Wang C, Li Y, Li Z. Tetrahedron Lett. 2011; 52: 4320
  • 30 Ye C, Shreeve JM. J. Org. Chem. 2004; 69: 8561
    • 31a Choi HY, Chi DY. Org. Lett. 2003; 5: 411
    • 31b See also supporting information in: Streuff J, Feurer M, Bichovski P, Frey G, Gellrich U. Angew. Chem. Int. Ed. 2012; 51: 8661
  • 32 Malanga C, Mannucci S, Lardicci L. Tetrahedron 1998; 54: 1021
  • 33 Hanson K, Roskop L, Djurovich PI, Zahariev F, Gordon MS, Thompson ME. J. Am. Chem. Soc. 2010; 132: 16247
  • 34 Li B, Gao L, Bian F, Yu W. Tetrahedron Lett. 2013; 54: 1063
  • 35 Pahari P, Rohr J. J. Org. Chem. 2009; 74: 2750
  • 36 Graczyk PP, Dimopoulos P, Bhatia PG, Farthing CN, Khan A. WO 2008,095,944, 2008
  • 37 Dirac PA. M. Proc. R. Soc. London, Ser. A 1929; 123: 714
  • 38 Slater JC. Phys. Rev. 1951; 81: 385
  • 39 Vosko SH, Wilk L, Nusair M. Can. J. Phys. 1980; 58: 1200
  • 40 Becke AD. Phys. Rev. A 1988; 38: 3098
  • 41 Perdew JP. Phys. Rev. B 1986; 33: 8822
  • 42 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 43 Grimme S. J. Chem. Phys. 2003; 118: 9095
  • 44 Turbomole 6.3 ed., a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, Karlsruhe, 2011, available from http://www.turbomole.com.
  • 45 Reed AE, Weinstock RB, Weinhold F. J. Chem. Phys. 1985; 83: 735