Synlett 2014; 25(5): 721-723
DOI: 10.1055/s-0033-1340596
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of 2,4,5-Trisubstituted Oxazoles via a Tandem Passerini Three-Component Coupling/Staudinger/Aza-Wittig/Isomerization Reaction

Long Wang
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Fax: +86(27)67862041   Email: mwding@mail.ccnu.edu.cn
,
Zhi-Lin Ren
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Fax: +86(27)67862041   Email: mwding@mail.ccnu.edu.cn
,
Min Chen
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Fax: +86(27)67862041   Email: mwding@mail.ccnu.edu.cn
,
Ming-Wu Ding*
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Fax: +86(27)67862041   Email: mwding@mail.ccnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 31 October 2013

Accepted after revision: 10 December 2013

Publication Date:
14 January 2014 (online)


Abstract

2,4,5-Trisubstituted oxazoles were prepared via a tandem Passerini three-component coupling/Staudinger/aza-Wittig/isomerization reaction in one-pot fashion, starting from easily accessible α-azidocinnamaldehydes, acids, isocyanide and triphenylphosphine.

Supporting Information

 
  • References and Notes

  • 1 Kean WF. Curr. Med. Res. Opin. 2004; 20: 1275
    • 2a Ryu CK, Lee RY, Kim NY, Kim YH, Song AL. Bioorg. Med. Chem. Lett. 2009; 19: 5924
    • 2b Argade ND, Kalrale BK, Gill CH. Eur. J. Chem. 2008; 5: 120
  • 3 Liu XH, Lv PC, Xue JY, Song BA, Zhu HL. Eur. J. Med. Chem. 2009; 44: 3930
    • 4a Linder J, Moody CJ. Chem. Commun. 2007; 1508
    • 4b Miyake F, Hashimoto M, Tonsiengsom S, Yakushijin K, Horne DA. Tetrahedron 2010; 66: 4888
    • 4c Giddens A, Boshoff HM, Franzblau S, Barry C, Copp B. Tetrahedron Lett. 2005; 46: 7355
    • 5a Dunbar K, Mitchell D. J. Am. Chem. Soc. 2013; 135: 8692
    • 5b Birkett S, Ganame D, Hawkins B, Meiries S, Quach T, Rizzacasa M. J. Org. Chem. 2013; 78: 116
    • 5c Essiq S, Bretzke S, Müller R, Menche D. J. Am. Chem. Soc. 2012; 134: 19362
    • 5d Luo YD, Ji KG, Li YX, Zhang LM. J. Am. Chem. Soc. 2012; 134: 17412
    • 5e Powner M, Zheng SL, Szostak J. J. Am. Chem. Soc. 2012; 134: 13889
    • 5f Goodman S, Mans D, Sisko J, Yin H. Org. Lett. 2012; 14: 1604
    • 6a Saito A, Taniguchi A, Kambara Y, Hanzawa Y. Org. Lett. 2013; 15: 2672
    • 6b Liu X, Cheng R, Zhao FF, Zhang-Negrerie D, Du YF, Zhao K. Org. Lett. 2012; 14: 5480
    • 6c Zhou W, Xie C, Han JL, Pan Y. Org. Lett. 2012; 14: 4766
    • 6d Jiang HF, Huang HW, Cao H, Qi CR. Org. Lett. 2010; 12: 5561
    • 6e Lechel T, Lentz D, Reissig HU. Chem. Eur. J. 2009; 15: 5432
    • 6f Wachenfeldt H, Röse P, Paulsen F, Loganathan N, Strand D. Chem. Eur. J. 2013; 19: 7982
    • 6g Senadi GC, Hu WP, Hsiao JS, Vandavasi JK, Chen CY, Wang JJ. Org. Lett. 2012; 14: 4478
    • 7a Yugandar S, Acharya A, Ila H. J. Org. Chem. 2013; 78: 3948
    • 7b Kretschmer M, Menche D. Org. Lett. 2012; 14: 382
    • 7c Williams DR, Fu LF. Org. Lett. 2010; 12: 808
    • 7d Lee K, Counceller CM, Stambuli JP. Org. Lett. 2009; 11: 1457
    • 7e Flegeau EF, Popkin ME, Greaney MF. Org. Lett. 2006; 8: 2495
    • 7f Verrier C, Martin T, Hoarau C, Marsais F. J. Org. Chem. 2008; 73: 7383
    • 8a Huang Y, Ni LJ, Gan HF, He Y, Xu JY, Wu XM, Yao HQ. Tetrahedron 2011; 67: 2066
    • 8b Murai K, Takahara Y, Matsushita T, Komatsu H, Fujioka H. Org. Lett. 2010; 12: 3456
    • 8c Deeley J, Bertram A, Pattenden G. Org. Biomol. Chem. 2008; 6: 1994
    • 8d Phillipa AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
  • 9 Xie J, Jiang HL, Cheng YX, Zhu CJ. Chem. Commun. 2012; 48: 979
  • 10 Xue WJ, Li Q, Zhu YP, Wang JG, Wu AX. Chem. Commun. 2012; 48: 3485
    • 11a He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 11b Davies PW, Cremonesi A, Dumitrescu L. Angew. Chem. Int. Ed. 2011; 50: 8931
    • 11c Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
    • 11d Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
  • 13 Zhu J, Bienaymé H. Multicomponent Reactions . Wiley; New York: 2005
    • 14a Domling A. Chem. Rev. 2006; 106: 17
    • 14b Gulevich AV, Zhdanko AG, Orru RV. A, Nenajdenko VG. Chem. Rev. 2010; 110: 5235
    • 14c Sadjadi S, Heravi MM. Tetrahedron 2011; 67: 2707
    • 15a Naganaboina VK, Chandra KL, Desper J, Rayat S. Org. Lett. 2011; 13: 3718
    • 15b Kshirsagar UA, Puranik VG, Argade NP. J. Org. Chem. 2010; 75: 2702
    • 15c Palacios F, Alonso C, Aparicio D, Rubiales G, Santos JM. Tetrahedron 2007; 63: 523
    • 15d Alajarin M, Bonillo B, Ortin M.-M, Sanchez-Andrada P, Vidal A, Orenes R.-A. Org. Biomol. Chem. 2010; 8: 4690
    • 15e Devarie-Baez NO, Xian M. Org. Lett. 2010; 12: 752
    • 16a DeMoliner F, Crosignani S, Banfi L, Riva R, Basso A. J. Comb. Chem. 2010; 12: 613
    • 16b Lecinska P, Corres N, Moreno D, Garcia-Valverde M, Marcaccini S, Torroba T. Tetrahedron 2010; 66: 6783
    • 16c Sanudo M, Garcia-Valverde M, Marcaccini S, Delgado JJ, Rojo J, Torroba T. J. Org. Chem. 2009; 74: 2189
    • 16d He P, Wu J, Nie YB, Ding MW. Tetrahedron 2009; 65: 8563
    • 16e He P, Nie YB, Wu J, Ding MW. Org. Biomol. Chem. 2011; 9: 1429
    • 16f He P, Wu J, Nie YB, Ding MW. Eur. J. Org. Chem. 2010; 1088
    • 16g Wang Y, Chen M, Ding MW. Tetrahedron 2013; 69: 9056
    • 18a L’abbé G, Hassner A. J. Org. Chem. 1971; 36: 258
    • 18b Hassner A, L’abbé G, Miller MJ. J. Am. Chem. Soc. 1971; 93: 981
  • 19 General Procedure for the Preparation of Oxazoles 5: A mixture of α-azidocinnamaldehyde 1 (0.17 g, 1 mmol), isocyanide (1 mmol), and acid (1 mmol) was stirred in CH2Cl2 (5 mL) at r.t. or at 40–50 °C for 24–48 h. Then Ph3P (0.26 g, 1 mmol) in CH2Cl2 (5 mL) was added dropwise to the reaction system and the reaction mixture was stirred at r.t. for 2 h. The solvent was evaporated under reduced pressure, and toluene (10 mL) was added. After the resulting solution was refluxed for 8–10 h, solid K2CO3 (0.014 g, 0.1 mmol) was added to the reaction system and the solution was refluxed for further 1–2 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (Et2O–petroleum ether, 1:6) to give oxazoles 5. 5a: white solid; mp 145–146 °C. 1H NMR (600 MHz, CDCl3): δ = 8.03 (d, J = 7.2 Hz, 2 H, ArH), 7.18–7.45 (m, 7 H, ArH), 6.08 (s, 1 H, NH), 4.34 (s, 2 H, CH2), 1.50 (s, 9 H, 3 × Me). 13C NMR (150 MHz, CDCl3): δ = 159.8, 157.6, 145.4, 139.4, 138.6, 131.1, 129.0, 128.7, 128.3, 126.8, 126.5, 126.3, 51.7, 32.8, 29.0. MS (EI, 70 eV): m/z (%) = 334 (87) [M+], 278 (86), 261 (33), 131 (100), 103 (39). Anal. Calcd for C21H22N2O2: C, 75.42; H, 6.63; N, 8.38. Found: C, 75.56; H, 6.73; N, 8.59.