Synlett 2014; 25(10): 1403-1408
DOI: 10.1055/s-0033-1339025
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Reduction of Halogenated Nitroarenes with Hydrazine Hydrate in the Presence of Pd/C

Fang Li
a   College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721, USA   Fax: +1(520)6260794   Email: hongyuli@pharmacy.arizona.edu
b   BIO-5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd, Oro Valley, AZ 85737, USA
,
Brendan Frett
a   College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721, USA   Fax: +1(520)6260794   Email: hongyuli@pharmacy.arizona.edu
b   BIO-5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd, Oro Valley, AZ 85737, USA
,
Hong-yu Li*
a   College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721, USA   Fax: +1(520)6260794   Email: hongyuli@pharmacy.arizona.edu
b   BIO-5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd, Oro Valley, AZ 85737, USA
› Author Affiliations
Further Information

Publication History

Received: 05 March 2014

Accepted after revision: 07 April 2014

Publication Date:
12 May 2014 (online)


Abstract

A large variety of halogenated nitroarenes have been selectively reduced with hydrazine hydrate in the presence of Pd/C to give the corresponding (halogenated) anilines in good yield.

 
  • References and Notes

    • 1a Downing RS, Kunkeler PJ, Bekkum HV. Catal. Today 1997; 37: 121
    • 1b Ono N. The Nitro Group in Organic Synthesis. Wiley; New York: 2001
  • 2 Bechamp AJ. Anal. Chim. Phys. 1854; 42: 186
    • 3a Rylander PN. Hydrogenation Methods . Academic; New York: 1985
    • 3b Hudlicky M. Reductions in Organic Chemistry . Ellis Horwood Ltd; Chichester: 1984: 1
    • 3c Smith GV, Nothesiz F. Heterogeneous Catalysis in Organic Chemistry . Academic; New York: 1999: 71
    • 3d Auer SM, Grunwaldt JD, Koppel RA, Baiker A. J. Mol. Catal. A: Chem. 1999; 139: 305
    • 3e Shi Q, Lu R, Jin K, Zhang Z, Zhao D. Green Chem. 2006; 8: 868
    • 3f He L, Wang L.-C, Sun H, Ni J, Cao Y, He H.-Y, Fan K.-N. Angew. Chem. Int. Ed. 2009; 48: 9538
    • 3g Jagadeesh RV, Wienhofer G, Westerhaus FA, Surkus A, Pohl M, Junge H, Junge K, Beller M. Chem. Commun. 2011; 47: 10972
    • 3h Farhadi S, Siadatnasab F. J. Mol. Catal. A: Chem. 2011; 339: 108

      For reviews on transfer hydrogenation, see:
    • 4a Gladiali S, Mestroni G. Transition Metals for Organic Synthesis . Wiley-VCH; Weinheim: 2004
    • 4b Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
    • 4c Samec JS. M, Bäckvall J.-E, Andersson PG, Brandt P. Chem. Soc. Rev. 2006; 35: 237
    • 4d Brieger G, Nestrick TJ. Chem. Rev. 1974; 74: 567
    • 5a Wang Y, Saha B, Frett B, Li F, Li H.-Y. Tetrahedron Lett. 2014; 55: 1281
    • 5b Saha B, Frett B, Wang Y, Li H.-Y. Tetrahedron Lett. 2013; 54: 2340
    • 5c Sharma A, Li H.-Y. Synlett 2011; 1407
    • 5d Li H.-Y, Wang Y, McMillen WT, Chatterjee A, Toth JE, Mundla SR, Voss M, Boyer RD, Sawyer JS. Tetrahedron 2007; 63: 11763
    • 5e Sawyer JS, Beight DW, Ciapetti P, Decollo TV, Godfrey AG, Goodson TJr, Herron DK, Li H.-Y, Liao J, McMillen WT, Miller SC, Mort NA, Yingling JM, Smith EC. R. PCT Int. Appl WO 2002094833, 2002
    • 6a Wang X, Liang M, Zhang J, Wang Y. Curr. Org. Chem. 2007; 11: 299
    • 6b Blaser H.-U, Steiner H, Studer M. ChemCatChem. 2009; 1: 210
    • 6c Quinn JF, Bryant CE, Golden KC, Gregg BT. Tetrahedron Lett. 2010; 51: 786
  • 7 Campos C, Cecilia T, Oportus M, Pena MA, Fierro JL. G, Reyes P. Catal. Today 2013; 213: 93

    • For hydrazine as H source, see:
    • 8a He L, Wang L, Sun H, Ni J, Cao Y, He H, Fan K. Angew. Chem. Int. Ed. 2009; 48: 9538
    • 8b Junge K, Wendt B, Shaikh N, Beller M. Chem. Commun. 2010; 46: 1769
    • 8c Lou X.-B, He L, Qian Y, Liu Y.-M, Cao Y, Fan K.-N. Adv. Synth. Catal. 2011; 353: 281
    • 8d Sharma U, Verma PK, Kumar N, Kumar V, Bala M, Singh B. Chem.-Eur. J. 2011; 17: 5903
    • 8e Mandal PK, McMurray JS. J. Org. Chem. 2007; 72
    • 8f Shi Q, Lu R, Lu L, Fu X, Zhao D. Adv. Synth. Catal. 2007; 349: 1877
    • 8g Paul M, Pal N, Bhaumik A. Eur. J. Inorg. Chem. 2010; 5129
    • 8h Park YK, Choi SB, Nam HJ, Jung D, Ahn HC, Choi K, Furukawa H, Kim J. Chem. Commun. 2010; 46: 3086
    • 8i Liu L, Qiao B, Chen Z, Zhang J, Deng Y. Chem. Commun. 2009; 653
    • 8j Niemeier JK, Kjell DP. Org. Process Res. Dev. 2013; 17: 1580
    • 8k Gkizis PL, Stratakis M, Lykakis IN. Catal. Commun. 2013; 36: 48
  • 9 All microwave experiments were performed using a Biotage Initiator Classic microwave synthesizer.
  • 10 Larhed M, Olofsson K. Microwave Methods in Organic Synthesis . Springer; Berlin: 2006
  • 11 Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
  • 12 General Procedures; Method A: To a mixture of halogenated nitroarene (1 mmol), Pd/C(5%), and MeOH (5 mL) was added NH2NH2·H2O (10 mmol), and the resulting solution was heated at 80 °C reflux condition for 5 min. Then the mixture was filtered and concentrated in vacuo. The crude material was purified by flash column chromatography using hexanes and EtOAc. Method B: To a mixture of halogenated nitroarene (1 mmol), Pd/C(10%), and MeOH (5 mL) was added NH2NH2·H2O (10 mmol), and the resulting solution was heated at 120 °C by Biotage Initiator Classic microwave synthesizer for 15 min. The mixture was filtered and condensed in vacuo. The crude material was purified by flash column chromatography using hexanes and EtOAc. 2-Bromo-5-(tert-butyl)aniline (3a): compound 3a was prepared in 95% yield according to the general procedure (Method A). 1H NMR (400 MHz, CDCl3): δ = 7.31 (d, J = 8.4 Hz, 1 H), 6.79 (d, J = 2.3 Hz, 1 H), 6.66 (dd, J = 8.3, 2.4 Hz, 1 H), 4.02 (br s, 2 H), 1.27 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 151.8, 143.5, 132.0, 117.0, 113.1, 106.3, 34.5, 31.2 (3 × C).