Synlett 2013; 24(11): 1405-1409
DOI: 10.1055/s-0033-1338859
letter
© Georg Thieme Verlag Stuttgart · New York

Selenium-Doped TiO2 as an Efficient Photocatalyst for the Oxidation of Tetrahydrofuran to γ-Butyrolactone Using Hydrogen Peroxide as Oxidant

Patnam Padmalatha
Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India   Fax: +91(135)2660202   Email: suman@iip.res.in
,
Praveen K. Khatri
Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India   Fax: +91(135)2660202   Email: suman@iip.res.in
,
Suman L. Jain*
Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India   Fax: +91(135)2660202   Email: suman@iip.res.in
› Author Affiliations
Further Information

Publication History

Received: 08 January 2013

Accepted after revision: 25 April 2013

Publication Date:
06 June 2013 (online)


Abstract

Selenium-doped TiO2 has been used for the first time as efficient photocatalyst for the oxidation of tetrahydrofuran by using hydrogen peroxide as oxidant, affording γ-butyrolactone (GBL) in excellent yield with higher selectivity. TiO2-doped with selenium showed greater visible absorption and exhibited superior photocatalytic activity than undoped TiO2. The prepared catalyst was subjected to reflux in Millipore water in order to remove the surface-bound selenium species. After this treatment, the catalyst did not show any leaching and showed efficient recycling with consistent catalytic efficiency.

 
  • References

    • 1a Fujishima A, Rao TN, Tryk DA. J. Photochem. Photobiol., C 2000; 1: 1
    • 1b Fujishima A, Honda K. Nature (London) 1972; 238: 37
    • 1c Leary R, Westwood A. Carbon 2011; 49: 741
    • 1d Vinodgopal K, Wynkoop DE, Kamat PV. Environ. Sci. Technol. 1996; 30: 1660
  • 2 Serpone N. J. Phys. Chem. B 2006; 110: 24287
  • 3 Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C 2007; 111: 5259
  • 4 Thompson T, Yates J. Chem. Rev. 2006; 106: 4428
  • 5 Qiu X, Burda C. Chem. Phys. 2007; 339: 1
  • 6 Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E. Chem. Phys. 2007; 339: 44
  • 7 Rockafellow EM, Fang X, Trewyn BG, Schmidt-Rohr K, Jenks WS. Chem. Mater. 2009; 21: 1187
  • 8 Rockafellow EM, Stewart LK, Jenks WS. Appl. Catal. B 2009; 91: 554
  • 9 Reddy KM, Baruwati B, Jayalakshmi M, Rao MM, Manorama SV. J. Solid State Chem. 2005; 178: 3352
  • 10 Kuznetsov VN, Serpone N. J. Phys. Chem. B 2006; 110: 25203
  • 11 Venkatachalam N, Vinu A, Anandan S, Arabindoo B, Murugesan V. J. Nanosci. Nanotechnol. 2006; 6: 2499
  • 12 Peng F, Cai L, Yu H, Wang H, Yang JJ. Solid State Chem. 2008; 181: 130
  • 13 Mitoraj D, Kisch H. Solid State Phenomena 2010; 162: 45
  • 14 Tojo T, Tachikawa M, Fujitsuka T, Majima J. J. Phys Chem. C 2008; 112: 14948
  • 15 Gurkan YY, Kasapbasi E, Cinar Z. Chem. Eng. J. 2013; 214: 34
  • 16 Baba T, Kameta K, Nishiyama S, Tsuruya S, Masai M. Bull. Chem. Soc. Jpn. 1990; 63: 255
  • 17 Metsger L, Bittner S. Tetrahedron 2000; 56: 1905
  • 18 Kajigaeshi S, Nakagawa T, Nagasaki N, Yamasaki H, Fujisaki S. Bull. Chem. Soc. Jpn. 1986; 59: 747
  • 19 Sakaguchi S, Kikuchi D, Ishii Y. Bull. Chem. Soc. Jpn. 1997; 10: 2561
  • 20 Smith AB, Scarborough RM. Synth. Commun. 1980; 10: 205
  • 21 Ogata Y, Tomizawa K, Ikeda T. J. Org. Chem. 1980; 45: 1320
  • 22 Nwaukwa SO, Keehn PM. Tetrahedron Lett. 1982; 23: 35
  • 23 Sasidharan M, Bhaumik A. J. Mol. Catal. A: Chem. 2011; 338: 105
  • 24 Zhang S, Chen X, Tian Y, Jin B, Yang J. J. Cryst. Growth 2007; 304: 42
  • 25 Rockafellow EM, Haywood JM, Witte T, Houk RS, Jenks WS. Langmuir 2010; 26: 19052
  • 26 Štengl V, Bakardjieva S, Bludská J. J. Mater Sci. 2011; 46: 3523
  • 27 Badrinayaaan S, Mandale AB, Gunjikar VG, Sinha AB. P. J. Mater. Sci. 1986; 21: 3333