Synthesis 2014; 46(18): 2506-2514
DOI: 10.1055/s-0033-1338629
paper
© Georg Thieme Verlag Stuttgart · New York

A Novel Route to 6-Substituted Piperidin-3-ols via Domino Cyclization of 2-Hydroxy-6-phosphinyl-5-hexenyl Tosylates with Primary Amines: Synthesis of (±)-Pseudoconhydrine and (±)-epi-Pseudoconhydrine

Cathrin Scherner
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Fax: +49(5323)722858   Email: ernst.schaumann@tu-clausthal.de
,
Jens-Kerim Ergüden
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Fax: +49(5323)722858   Email: ernst.schaumann@tu-clausthal.de
,
Gunadi Adiwidjaja
b   University of Hamburg, Mineralogisch-Petrographisches Institut, Grindelallee 46, 20146 Hamburg, Germany
,
Ernst Schaumann*
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Fax: +49(5323)722858   Email: ernst.schaumann@tu-clausthal.de
› Author Affiliations
Further Information

Publication History

Received: 02 March 2014

Accepted after revision: 04 April 2014

Publication Date:
23 June 2014 (online)


Abstract

2-Hydroxy-6-phosphinyl-5-hexenyl tosylates, oxirane ring-opening products derived from glycidyl tosylates and phosphinyl-substituted allyl anions, undergo domino SN2–Michael reactions with primary amines to give 6-phosphinylmethylpiperidin-3-ols. The phosphinyl unit can be used in Horner olefination reactions. This approach is applied to the synthesis of racemic pseudoconhydrine and its epimer.

 
  • References

  • 1 Weintraub PM, Sabol JS, Kane JM, Borcherding DR. Tetrahedron 2003; 59: 2953
  • 2 Buffat MG. P. Tetrahedron 2004; 60: 1701
    • 3a De Risi C, Fanton G, Pollini GP, Trapella C, Valente F, Zanirato V. Tetrahedron: Asymmetry 2008; 19: 131
    • 3b Bailey PD, Millwood PA, Smith PD. Chem. Commun. 1998; 633
    • 3c Laschat S, Dickner T. Synthesis 2000; 1781
    • 3d Cossy J. Chem. Rec. 2005; 5: 70
  • 4 Wijdeven MA, Willemsen J, Rutjes FP. J. T. Eur. J. Org. Chem. 2010; 2831
  • 5 Wijdeven MA, van Delft FL, Rutjes FP. J. T. Tetrahedron 2010; 66: 5623
    • 6a Christofidis I, Welter A, Jadot J. Tetrahedron 1977; 33: 977
    • 6b Hasseberg H.-A, Gerlach H. Liebigs Ann. Chem. 1989; 255
    • 6c Makabe H, Kong LK, Mitsuru H. Org. Lett. 2003; 5: 27
    • 7a Toyooka N, Yoshida Y, Yotsui Y, Momose T. J. Org. Chem. 1999; 64: 4914
    • 7b Kim IS, Ryu CB, Li QR, Zee OP, Jung YH. Tetrahedron Lett. 2007; 48: 6258
  • 8 Kazmaier U, Grandel R. Eur. J. Org. Chem. 1998; 1833
  • 9 Ibekeke-Bomangwa W, Hootelé C. Tetrahedron 1987; 43: 935
  • 10 Ladenburg A, Adam G. Ber. Dtsch. Chem. Ges. 1891; 24: 1671
    • 11a Marion L, Cockburn WF. J. Am. Chem. Soc. 1949; 71: 3402
    • 11b Gruber W, Schlögl K. Monatsh. Chem. 1949; 80: 499
    • 11c Šorm F, Sicher J. Collect. Czech. Chem. Commun. 1949; 14: 331
    • 11d Brown E, Lavoue J, Dhal R. Tetrahedron 1973; 29: 455
    • 11e Enders D, Hassel T, Pieter R, Renger B, Seebach D. Synthesis 1976; 548
    • 11f Renger B, Kalinowski H.-O, Seebach D. Chem. Ber. 1977; 110: 1866
    • 11g Shono T, Matsumura Y, Onomura O. Chem. Lett. 1984; 1101
    • 11h Harding KE, Burks SR. J. Org. Chem. 1984; 49: 40
    • 11i Plehiers M, Hootelé C. Tetrahedron Lett. 1993; 34: 7569
    • 11j Fry DF, Brown M, McDonald JC. Tetrahedron Lett. 1996; 37: 6227
    • 11k Plehiers M, Hootelé C. Can. J. Chem. 1996; 74: 2444
    • 12a Tadano K, Iimura Y, Suami T. J. Carbohydr. Chem. 1985; 4: 129
    • 12b Takahata H, Inose K, Momose T. Heterocycles 1994; 38: 269
    • 12c Oppolzer W, Bochet CG. Tetrahedron Lett. 1995; 36: 2959
    • 12d Herdeis C, Held WA, Kirfel A, Schwabenländer F. Liebigs Ann. 1995; 1295
    • 12e Sakagami H, Kamikubo T, Ogasawara K. Chem. Commun. 1996; 1433
    • 12f Hirai Y, Shibuya K, Fukuda Y, Yokoyama H, Yamaguchi S. Chem. Lett. 1997; 221
    • 12g Dockner M, Sasaki NA, Riche C, Potier P. Liebigs Ann. Recl. 1997; 1267
    • 12h Moody CJ, Lightfoot AP, Gallagher PT. J. Org. Chem. 1997; 62: 746
    • 12i Cossy J, Dumas C, Pardo DG. Synlett 1997; 905
    • 12j Herdeis C, Schiffer T. Synthesis 1997; 1405
    • 12k Agami C, Couty F, Lam H, Mathieu H. Tetrahedron 1998; 54: 8783
    • 12l Löfstedt J, Pettersson-Fasth H, Bäckvall J.-E. Tetrahedron 2000; 56: 2225
    • 12m Hedley SJ, Moran WJ, Prenzel AH. G. P, Price DA, Harrity JP. A. Synlett 2001; 1596
    • 12n Liu G, Meng J, Feng C.-G, Huang P.-Q. Tetrahedron: Asymmetry 2008; 19: 1297
    • 12o Satyalakshmi G, Suneel K, Shinde DB, Das B. Tetrahedron: Asymmetry 2011; 22: 1000
    • 12p Bates RW, Sivarajan K, Straub BF. J. Org. Chem. 2011; 76: 6844
    • 12q Higashiyama K, Matsumura M, Kurita E, Yamauchi T. Heterocycles 2012; 86: 371
    • 12r Lovick HM, Michael FE. J. Am. Chem. Soc. 2010; 132: 1249
  • 13 Ergüden J.-K, Schaumann E. Synthesis 1996; 707
  • 14 Bunce RA, Peeples CJ, Jones PB. J. Org. Chem. 1992; 57: 1727
  • 15 Bryson TA, Smith DC, Krueger SA. Tetrahedron Lett. 1977; 525
  • 16 Unit cell parameters: a = 1145.5(1) pm, b = 851.1(1) pm, c = 3014.2(1) pm, β = 102.49(1)°, V = 2869·106 pm3, Z = 4, monoclinic, space group P21/c, R = 0.059, Rw  = 0.147. CCDC 799120 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    • 17a Czech B, Bartsch RA. J. Org. Chem. 1984; 49: 4076
    • 17b Sajiki H, Kuno H, Hirota K. Tetrahedron Lett. 1998; 39: 7127
  • 18 Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765
  • 19 Nakabayashi N, Masuhara E, Iwakura Y. Bull. Chem. Soc. Jpn. 1966; 39: 413
  • 20 Inman M, Moody CJ. J. Org. Chem. 2010; 75: 6023