Synlett 2013; 24(9): 1093-1096
DOI: 10.1055/s-0033-1338435
letter
© Georg Thieme Verlag Stuttgart · New York

Aprotic Heterocyclic Anion Triazolide Ionic Liquids – A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

Robert L. Thompson*
a   National Energy Technology Laboratory, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA   Fax: +1(412)3864542   Email: Robert.thompson@contr.netl.doe.gov
b   URS Corp., P. O. Box 618, South Park, PA 15129, USA
,
Krishnan Damodaran
c   Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
,
David Luebke
a   National Energy Technology Laboratory, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA   Fax: +1(412)3864542   Email: Robert.thompson@contr.netl.doe.gov
,
Hunaid Nulwala*
a   National Energy Technology Laboratory, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA   Fax: +1(412)3864542   Email: Robert.thompson@contr.netl.doe.gov
d   Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA   Email: Hnulwala@andrew.cmu.edu
› Author Affiliations
Further Information

Publication History

Received: 27 February 2013

Accepted after revision: 28 March 2013

Publication Date:
18 April 2013 (online)


Abstract

The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H-4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

Supporting Information

 
  • References

  • 1 Ukshe EA. Russ. Chem. Rev. 1965; 34: 141
  • 2 Abe M, Fukaya Y, Ohno H. Chem. Commun. 2012; 48: 1808
  • 3 Han X, Armstrong DW. Org. Lett. 2005; 7: 4205
    • 4a Spear SK, Visser AE, Willauer HD, Swatloski RP, Griffen ST, Huddleston JG, Rogers RD. ACS Symposium Series. Vol. 766. Anastas PT, Heine LG, Williamson TC. American Chemical Society; Washington: 2000: 206
    • 4b Rogers RD, Seddon KR. Science 2003; 302: 792
    • 4c Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD. Environ. Sci. Technol. 2002; 36: 2523
    • 5a Wasserscheid P, Welton T. Ionic Liquids in Synthesis. Wiley–VCH; Weinheim: 2003
    • 5b Sheldon R. Chem. Commun. 2001; 2399
    • 6a Myers C, Pennline H, Luebke D, Ilconich J, Dixon JK, Maginn EJ, Brennecke JF. J. Membr. Sci. 2008; 322: 28
    • 6b Ilconich J, Myers C, Pennline H, Luebke D. J. Membr. Sci. 2007; 298: 41
    • 6c Blanchard LA, Gu ZY, Brennecke JF. J. Phys. Chem. B 2001; 105: 2437
    • 6d Brennecke JE, Gurkan BE. J. Phys. Chem. Lett. 2010; 1: 3459
    • 6e Mahurin SM, Yeary JS, Baker SN, Jiang DE, Dai S, Baker GA. J. Membr. Sci. 2012; 401: 61
  • 7 Ogihara W, Yoshizawa M, Ohno H. Chem. Lett. 2004; 33: 1022
  • 8 Wang CM, Luo XY, Luo HM, Jiang DE, Li HR, Dai S. Angew. Chem. Int. Ed. 2011; 50: 4918
  • 9 Gurkan B, Goodrich BF, Mindrup EM, Ficke LE, Massel M, Seo S, Senftle TP, Wu H, Glaser MF, Shah JK, Maginn EJ, Brennecke JF, Schneider WF. J. Phys. Chem. Lett. 2010; 1: 3494
  • 10 Bates ED, Mayton ED, Ntai I, Davis JH. J. Am. Chem. Soc. 2002; 124: 926
  • 11 Bordwell FG. Acc. Chem. Res. 1988; 21: 456
    • 12a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 12b Joralemon MJ, O’Reilly RK, Hawker CJ, Wooley KL. J. Am. Chem. Soc. 2005; 127: 16892
    • 12c Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 12d Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 13 Groll AH, Walsh TJ. Swiss Med. Wkly 2002; 132: 303
    • 14a Takizawa K, Nulwala H, Thibault RJ, Lowenhielm P, Yoshinaga K, Wooley KL, Hawker CJ. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 2897
    • 14b Nulwala H, Takizawa K, Odukale A, Khan A, Thibault RJ, Taft BR, Lipshutz BH, Hawker CJ. Macromolecules 2009; 42: 6068
    • 14c Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Fréchet JM. J, Sharpless KB, Fokin VV. Angew. Chem. Int. Ed. 2004; 43: 3928
    • 14d Nulwala H, Burke DJ, Khan A, Serrano A, Hawker CJ. Macromolecules 2010; 43: 5474
    • 15a Nulwala HB, Tang CN, Kail BW, Damodaran K, Kaur P, Wickramanayake S, Shi W, Luebke DR. Green Chem. 2011; 13: 3345
    • 15b Khan SS, Hanelt S, Liebscher J. ARKIVOC 2009; (xii): 193
    • 15c Hanelt S, Liebscher J. Synlett 2008; 1058
  • 16 Yan F, Lartey M, Achary DK, Albenze E, Thompson RL, Kim J, Haranczyk M, Nulwala H, Luebke DR, Smit B. Phys. Chem. Chem. Phys. 2013; 15: 3264
  • 17 Loren JC, Krasinski A, Fokin VV, Sharpless KB. Synlett 2005; 2847
  • 18 Fukumoto K, Yoshizawa M, Ohno H. J. Am. Chem. Soc. 2005; 127: 2398
  • 19 Burrell AK, Del Sesto RE, Baker SN, McCleskey TM, Baker GA. Green Chem. 2007; 9: 449