Eur J Pediatr Surg 2012; 22(05): 393-398
DOI: 10.1055/s-0032-1329410
Review
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Regenerative Medicine for Congenital Diaphragmatic Hernia: Regeneration for Repair

Paolo De Coppi
1   Surgery Unit, Great Ormond Street Hospital, Institute of Child Health, UCL Stem Cell Centre, University College London, London, United Kingdom
,
Jan Deprest
2   Department of Development and Regeneration, Research Unit Fetus Placenta Neonate, Faculty of Medicine, Division of Woman and Child, University Hospital Gasthuisberg, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

20 September 2012

21 September 2012

Publication Date:
31 October 2012 (online)

Abstract

Regenerative medicine has developed recently as a new field of science aiming at restoring organ and tissue damage through the use of autologous constructs. Cellular therapies and relatively simple tissue engineering reconstructions have recently been successfully applied into patients. For babies born with congenital diaphragmatic hernia, regenerative medicine may play a role both in developing a myogenic patch capable of restoring muscle function and promoting regeneration of hypoplastic lungs that characterised those patients. The latter is particularly attractive because it may change the long-term outcome of those children. We aim here to discuss recent advancement in the field, looking in particular at the future clinical prospective of those exciting therapeutic strategies.

 
  • References

  • 1 Ijsselstijn HT, Tibboel D, Hop WJ, Molenaar JC, de Jongste JC. Long-term pulmonary sequelae in children with congenital diaphragmatic hernia. Am J Respir Crit Care Med 1997; 155 (1) 174-180
  • 2 Peetsold MG, Heij HA, Kneepkens CM, Nagelkerke AF, Huisman J, Gemke RJ. The long-term follow-up of patients with a congenital diaphragmatic hernia: a broad spectrum of morbidity. Pediatr Surg Int 2009; 25 (1) 1-17
  • 3 van den Hout L, Reiss I, Felix JF , et al; Congenital Diaphragmatic Hernia Study Group. Risk factors for chronic lung disease and mortality in newborns with congenital diaphragmatic hernia. Neonatology 2010; 98 (4) 370-380
  • 4 Valfrè L, Braguglia A, Conforti A , et al. Long term follow-up in high-risk congenital diaphragmatic hernia survivors: patching the diaphragm affects the outcome. J Pediatr Surg 2011; 46 (1) 52-56
  • 5 Rocha GM, Bianchi RF, Severo M , et al. Congenital diaphragmatic hernia - the neonatal period (part I). Eur J Pediatr Surg 2008; 18 (4) 219-223
  • 6 Trachsel D, Selvadurai H, Bohn D, Langer JC, Coates AL. Long-term pulmonary morbidity in survivors of congenital diaphragmatic hernia. Pediatr Pulmonol 2005; 39 (5) 433-439
  • 7 Rocha GM, Bianchi RF, Severo M , et al. Congenital diaphragmatic hernia. The post-neonatal period. Part II. Eur J Pediatr Surg 2008; 18 (5) 307-312
  • 8 Deprest J, De Coppi P. Antenatal management of isolated congenital diaphragmatic hernia today and tomorrow: ongoing collaborative research and development. Journal of Pediatric Surgery Lecture. J Pediatr Surg 2012; 47 (2) 282-290
  • 9 Conconi MT, Bellini S, Teoli D , et al. In vitro and in vivo evaluation of acellular diaphragmatic matrices seeded with muscle precursors cells and coated with VEGF silica gels to repair muscle defect of the diaphragm. J Biomed Mater Res A 2009; 89 (2) 304-316
  • 10 Fuchs JR, Kaviani A, Oh JT , et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 2004; 39 (6) 834-838 , discussion 834–838
  • 11 Jesudason ECC, Connell MG, Fernig DG, Lloyd DA, Losty PD. Early lung malformations in congenital diaphragmatic hernia. J Pediatr Surg 2000; 35 (1) 124-127 , discussion 128
  • 12 Montedonico SS, Sugimoto K, Felle P, Bannigan J, Puri P. Prenatal treatment with retinoic acid promotes pulmonary alveologenesis in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2008; 43 (3) 500-507
  • 13 Pederiva F, Ghionzoli M, Pierro A , et al. Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant 2012; ; October 8 (Epub ahead of print)
  • 14 Brindle ME, Brar M, Skarsgard ED. Canadian Pediatric Surgery Network (CAPSNet). Patch repair is an independent predictor of morbidity and mortality in congenital diaphragmatic hernia. Pediatr Surg Int 2011; 27 (9) 969-974
  • 15 Prendergast M, Rafferty GF, Milner AD , et al. Lung function at follow-up of infants with surgically correctable anomalies. Pediatr Pulmonol 2012; 47 (10) 973-978
  • 16 Kamata SU, Usui N, Kamiyama M , et al. Long-term follow-up of patients with high-risk congenital diaphragmatic hernia. J Pediatr Surg 2005; 40 (12) 1833-1838
  • 17 Anversa P, Kajstura J, Leri A, Loscalzo J. Tissue-specific adult stem cells in the human lung. Nat Med 2011; 17 (9) 1038-1039
  • 18 Angelini A, Castellani C, Ravara B , et al. Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process. J Heart Lung Transplant 2011; 30 (11) 1281-1293
  • 19 Garcia O, Carraro G, Navarro S , et al. Cell-based therapies for lung disease. Br Med Bull 2012; 101: 147-161
  • 20 Liu X, Engelhardt JF. The glandular stem/progenitor cell niche in airway development and repair. Proc Am Thorac Soc 2008; 5 (6) 682-688
  • 21 Hegab AE, Ha VL, Gilbert JL , et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells 2011; 29 (8) 1283-1293
  • 22 Hegab AE, Kubo H, Fujino N , et al. Isolation and characterization of murine multipotent lung stem cells. Stem Cells Dev 2010; 19 (4) 523-536
  • 23 Kajstura J, Rota M, Hall SR , et al. Evidence for human lung stem cells. N Engl J Med 2011; 364 (19) 1795-1806
  • 24 Anversa P, Perrella MA, Kourembanas S, Choi AM, Loscalzo J. Regenerative pulmonary medicine: potential and promise, pitfalls and challenges. Eur J Clin Invest 2012; 42 (8) 900-913
  • 25 Takahashi K, Tanabe K, Ohnuki M , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (5) 861-872
  • 26 Moschidou D, Mukherjee S, Blundell MP , et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 2012; xx: xx-xx
  • 27 Longmire TA, Ikonomou L, Hawkins F , et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 2012; 10 (4) 398-411
  • 28 Mou H, Zhao R, Sherwood R , et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 2012; 10 (4) 385-397
  • 29 Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE, Henderson Jr WR. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS ONE 2012; 7 (3) e33165
  • 30 Macchiarini P, Jungebluth P, Go T , et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008; 372 (9655) 2023-2030
  • 31 Elliott MJ, De Coppi P, Speggiorin S , et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012; 380 (9846) 994-1000
  • 32 Totonelli G, Maghsoudlou P, Garriboli M , et al. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 2012; 33 (12) 3401-3410
  • 33 Ott HC, Clippinger B, Conrad C , et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 2010; 16 (8) 927-933
  • 34 Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8 (9) 726-736
  • 35 Brody AR, Salazar KD, Lankford SM. Mesenchymal stem cells modulate lung injury. Proc Am Thorac Soc 2010; 7 (2) 130-133
  • 36 van Haaften T, Byrne R, Bonnet S , et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 2009; 180 (11) 1131-1142
  • 37 Aslam M, Baveja R, Liang OD , et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 2009; 180 (11) 1122-1130
  • 38 Iyer SS, Ramirez AM, Ritzenthaler JD , et al. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 296 (1) L37-L45
  • 39 Loebinger MR, Sage EK, Janes SM. Mesenchymal stem cells as vectors for lung disease. Proc Am Thorac Soc 2008; 5 (6) 711-716
  • 40 Krause DS. Engraftment of bone marrow-derived epithelial cells. Ann N Y Acad Sci 2005; 1044: 117-124
  • 41 Thébaud B. Update in pediatric lung disease 2010. Am J Respir Crit Care Med 2011; 183 (11) 1477-1481
  • 42 Wong AP, Keating A, Lu WY , et al. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest 2009; 119 (2) 336-348
  • 43 Pozzobon M, Ghionzoli M, De Coppi PES. ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatr Surg Int 2010; 26 (1) 3-10
  • 44 Caplan AID, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98 (5) 1076-1084
  • 45 Crisostomo PRM, Markel TA, Wang Y, Meldrum DR. Surgically relevant aspects of stem cell paracrine effects. Surgery 2008; 143 (5) 577-581
  • 46 Jones CP, Rankin SM. Bone marrow-derived stem cells and respiratory disease. Chest 2011; 140 (1) 205-211
  • 47 Albera C, Polak JM, Janes S , et al. Repopulation of human pulmonary epithelium by bone marrow cells: a potential means to promote repair. Tissue Eng 2005; 11 (7–8) 1115-1121
  • 48 Alphonse RS, Rajabali S, Thébaud B. Lung injury in preterm neonates: the role and therapeutic potential of stem cells. Antioxid Redox Signal 2012; 17 (7) 1013-1040
  • 49 Tropea KA, Leder E, Aslam M , et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012; 302 (9) L829-L837
  • 50 Pierro M, Thébaud B. Mesenchymal stem cells in chronic lung disease: culprit or savior?. Am J Physiol Lung Cell Mol Physiol 2010; 298 (6) L732-L734
  • 51 Chang YS, Oh W, Choi SJ , et al. Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell Transplant 2009; 18 (8) 869-886
  • 52 De Coppi P, Bartsch Jr G, Siddiqui MM , et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25 (1) 100-106
  • 53 Ditadi A, de Coppi P, Picone O , et al. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 2009; 113 (17) 3953-3960
  • 54 Carraro GP, Perin L, Sedrakyan S , et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008; 26 (11) 2902-2911
  • 55 Iritani I. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat Embryol (Berl) 1984; 169 (2) 133-139
  • 56 Greer JJ, Cote D, Allan DW , et al. Structure of the primordial diaphragm and defects associated with nitrofen-induced CDH. J Appl Physiol 2000; 89 (6) 2123-2129
  • 57 Greer JJ, Allan DW, Babiuk RP, Lemke RP. Recent advances in understanding the pathogenesis of nitrofen-induced congenital diaphragmatic hernia. Pediatr Pulmonol 2000; 29 (5) 394-399
  • 58 Kluth D, Kangah R, Reich P, Tenbrinck R, Tibboel D, Lambrecht W. Nitrofen-induced diaphragmatic hernias in rats: an animal model. J Pediatr Surg 1990; 25 (8) 850-854
  • 59 Montedonico SN, Nakazawa N, Puri P. Retinoic acid rescues lung hypoplasia in nitrofen-induced hypoplastic foetal rat lung explants. Pediatr Surg Int 2006; 22 (1) 2-8
  • 60 Nakazawa NT, Takayasu H, Montedonico S, Puri P. Altered regulation of retinoic acid synthesis in nitrofen-induced hypoplastic lung. Pediatr Surg Int 2007; 23 (5) 391-396
  • 61 Cardoso WV. Molecular regulation of lung development. Annu Rev Physiol 2001; 63: 471-494
  • 62 Desai TJC, Cardoso WV. Growth factors in lung development and disease: friends or foe?. Respir Res 2002; 3: 2
  • 63 Maeda SS, Suzuki S, Suzuki T , et al. Analysis of intrapulmonary vessels and epithelial-endothelial interactions in the human developing lung. Lab Invest 2002; 82 (3) 293-301
  • 64 Warburton D, Bellusci S, De Langhe S , et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 2005; 57 (5 Pt 2) 26R-37R
  • 65 Warburton D, Bellusci S. The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev 2004; 5 (Suppl A) S283-S287
  • 66 Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV. The molecular basis of lung morphogenesis. Mech Dev 2000; 92 (1) 55-81
  • 67 Desai TJM, Malpel S, Flentke GR, Smith SM, Cardoso WV. Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol 2004; 273 (2) 402-415
  • 68 Acosta JMT, Thébaud B, Castillo C , et al. Novel mechanisms in murine nitrofen-induced pulmonary hypoplasia: FGF-10 rescue in culture. Am J Physiol Lung Cell Mol Physiol 2001; 281 (1) L250-L257
  • 69 Jani J, Nicolaides KH, Keller RL , et al; Antenatal-CDH-Registry Group. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 2007; 30 (1) 67-71
  • 70 Jani JC, Benachi A, Nicolaides KH , et al; Antenatal-CDH-Registry group. Prenatal prediction of neonatal morbidity in survivors with congenital diaphragmatic hernia: a multicenter study. Ultrasound Obstet Gynecol 2009; 33 (1) 64-69
  • 71 Waag KL, Loff S, Zahn K , et al. Congenital diaphragmatic hernia: a modern day approach. Semin Pediatr Surg 2008; 17 (4) 244-254
  • 72 Nobuhara KK, Lund DP, Mitchell J, Kharasch V, Wilson JM. Long-term outlook for survivors of congenital diaphragmatic hernia. Clin Perinatol 1996; 23 (4) 873-887
  • 73 Lally KP, Lally PA, Lasky RE , et al; Congenital Diaphragmatic Hernia Study Group. Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics 2007; 120 (3) e651-e657
  • 74 Kamata S, Usui N, Kamiyama M , et al. Long-term follow-up of patients with high-risk congenital diaphragmatic hernia. J Pediatr Surg 2005; 40 (12) 1833-1838
  • 75 Moss RL, Chen CM, Harrison MR. Prosthetic patch durability in congenital diaphragmatic hernia: a long-term follow-up study. J Pediatr Surg 2001; 36 (1) 152-154
  • 76 Laituri CA, Garey CL, Valusek PA , et al. Outcome of congenital diaphragmatic hernia repair depending on patch type. Eur J Pediatr Surg 2010; 20 (6) 363-365
  • 77 Garriboli M, Eaton S, Pierro A , et al. More patches or more lung in congenital diaphragmatic hernia?. J Pediatr Surg 2012; . In press
  • 78 Tsai J, Sulkowski J, Adzick NS, Hedrick HL, Flake AW. Patch repair for congenital diaphragmatic hernia: is it really a problem?. J Pediatr Surg 2012; 47 (4) 637-641
  • 79 Riehle KJ, Magnuson DK, Waldhausen JH. Low recurrence rate after Gore-Tex/Marlex composite patch repair for posterolateral congenital diaphragmatic hernia. J Pediatr Surg 2007; 42 (11) 1841-1844
  • 80 Bianchi A, Doig CM, Cohen SJ. The reverse latissimus dorsi flap for congenital diaphragmatic hernia repair. J Pediatr Surg 1983; 18 (5) 560-563
  • 81 Rossi CA, Pozzobon M, De Coppi P. Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 2010; 6 (3) 167-172
  • 82 Orlando G, Baptista P, Birchall M , et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int 2011; 24 (3) 223-232
  • 83 Orlando G, Wood KJ, De Coppi P , et al. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255 (5) 867-880
  • 84 Rossi CA, Pozzobon M, Ditadi A , et al. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity. PLoS ONE 2010; 5 (1) e8523
  • 85 Rossi CA, Flaibani M, Blaauw B , et al. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J 2011; 25 (7) 2296-2304
  • 86 Ferrari G, Cusella-De Angelis G, Coletta M , et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279 (5356) 1528-1530
  • 87 Cossu G, Bianco P. Mesoangioblasts—vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 2003; 13 (5) 537-542
  • 88 Tedesco FS, Gerli MF, Perani L , et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 2012; 4 (140) 40ra89
  • 89 Darabi R, Arpke RW, Irion S , et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 2012; 10 (5) 610-619
  • 90 Piccoli M, Franzin C, Bertin E , et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 2012; 30 (8) 1675-1684
  • 91 Claus F, Sandaite I, DeKoninck P , et al. Prenatal anatomical imaging in fetuses with congenital diaphragmatic hernia. Fetal Diagn Ther 2011; 29 (1) 88-100
  • 92 Jani JC, Peralta CF, Ruano R , et al. Comparison of fetal lung area to head circumference ratio with lung volume in the prediction of postnatal outcome in diaphragmatic hernia. Ultrasound Obstet Gynecol 2007; 30 (6) 850-854
  • 93 Kunisaki SM, Barnewolt CE, Estroff JA , et al. Liver position is a prenatal predictive factor of prosthetic repair in congenital diaphragmatic hernia. Fetal Diagn Ther 2008; 23 (4) 258-262
  • 94 Turner CG, Klein JD, Steigman SA , et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg 2011; 46 (1) 57-61