Zentralbl Chir 2017; 142(02): 161-168
DOI: 10.1055/s-0032-1328352
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Marker der Immunantwort bei Organtransplantation

Immunological Markers in Organ Transplantation
J. H. Beckmann
Klinik für Allgemeine, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, UKSH, Campus Kiel, Kiel, Deutschland
,
N. Heits
Klinik für Allgemeine, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, UKSH, Campus Kiel, Kiel, Deutschland
,
F. Braun
Klinik für Allgemeine, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, UKSH, Campus Kiel, Kiel, Deutschland
,
T. Becker
Klinik für Allgemeine, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, UKSH, Campus Kiel, Kiel, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2013 (online)

Zusammenfassung

Das immunologische Monitoring bei Organtransplantationen beruht schwerpunktmäßig auf der Bestimmung von Laborparametern als Surrogatmarker der Organdysfunktion. Goldstandard ist die invasive Biopsie des Transplantats, die strukturelle Schäden und Abstoßungsvorgänge sichert. Zwangsläufig kann die Diagnose einer Abstoßung anhand der histologischen Veränderungen erst verspätet gestellt werden. Wünschenswert wären neue nicht invasive Methoden und spezifische Marker, die bereits zu einem frühen Zeitpunkt, auf molekularer Ebene, Alloreaktivität und auch Toleranz erkennen lassen und eine frühzeitige Behandlung beziehungsweise ein kontrolliertes Absetzen der Immunsuppression ermöglichen. Zusätzlich werden neue prognostische Marker erwartet, die im Vorfeld einer Transplantation eine Risikostratifizierung zulassen und damit Einfluss auf Allokation und Immunsuppression haben werden. Neue Hochdurchsatz-Screeningverfahren erlauben die gleichzeitige Untersuchung von Hunderten von Eigenschaften und das Erstellen spezifischer biologischer Signaturen, die Vorhersagen bezüglich akuter Abstoßung, chronischer Organdysfunktion und Toleranz erlauben. Trotz wichtiger Fortschritte, die durch vielfältige Untersuchungen und Publikationen erzielt wurden, hat bislang so gut wie kein neuer Marker im klinischen Alltag Einzug gehalten. Dennoch werden neue Techniken, insbesondere Analysen des Genoms, des Transkriptoms, des Proteoms als auch des Metaboloms mittelfristig eine personalisierte Transplantationsmedizin erlauben und letztlich die bisherigen Ergebnisse und Transplantatüberlebenszeiten weiter verbessern. Dieser Artikel gibt einen Überblick über Grenzen und Möglichkeiten neuer biologischer Marker der Immunantwort bei Organtransplantationen.

Abstract

The immunological monitoring in organ transplantation is based mainly on the determination of laboratory parameters as surrogate markers of organ dysfunction. Structural damage, caused by alloreactivity, can only be detected by invasive biopsy of the graft, which is why inevitably rejection episodes are diagnosed at a rather progressive stage. New non-invasive specific markers that enable transplant clinicians to identify rejection episodes at an earlier stage, on the molecular level, are needed. The accurate identification of rejection episodes and the establishment of operational tolerance permit early treatment or, respectively, a controlled cessation of immunosuppression. In addition, new prognostic biological markers are expected to allow a pre-transplant risk stratification thus having an impact on organ allocation and immunosuppressive regimen. New high-throughput screening methods allow simultaneous examination of hundreds of characteristics and the generation of specific biological signatures, which might give concrete information about acute rejection, chronic dysfunction as well as operational tolerance. Even though multiple studies and a variety of publications report about important advances on this subject, almost no new biological marker has been implemented in clinical practice as yet. Nevertheless, new technologies, in particular analysis of the genome, transcriptome, proteome and metabolome will make personalised transplantation medicine possible and will further improve the long-term results and graft survival rates. This article gives a survey of the limitations and possibilities of new immunological markers in organ transplantation.

 
  • Literatur

  • 1 Braun F, Broering DC, Faendrich F. Immuntoleranz und Abstoßung. Allgemein- und Viszeralchirurgie up2date 2009; 3: 391-412
  • 2 Roedder S, Vitalone M, Khatri P. et al. Biomarkers in solid organ transplantation: establishing personalized transplantation medicine. Genome Med 2011; 3: 37
  • 3 Veenstra TD. Where are all the biomarkers?. Expert Rev Proteomics 2011; 8: 681-683
  • 4 Kowalski RJ, Post DR, Mannon RB. et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation 2006; 82: 663-668
  • 5 Schulz-Juergensen S, Burdelski MM, Oellerich M. et al. Intracellular ATP production in CD4+ T cells as a predictor for infection and allograft rejection in trough-level guided pediatric liver transplant recipients under calcineurin-inhibitor therapy. Ther Drug Monit 2012; 34: 4-10
  • 6 Deng MC, Eisen HJ, Mehra MR. et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 2006; 6: 150-160
  • 7 Shi L, Campbell G, Jones WD. et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 2010; 28: 827-838
  • 8 Bestard O, Cruzado JM, la Franquesa M. et al. Biomarkers in renal transplantation. Curr Opin Organ Transplant 2010; 15: 467-473
  • 9 Held PJ, Kahan BD, Hunsicker LG. et al. The impact of HLA mismatches on the survival of first cadaveric kidney transplants. N Engl J Med 1994; 331: 765-770
  • 10 Muro M, Lopez-Alvarez MR, Campillo JA. et al. Influence of human leukocyte antigen mismatching on rejection development and allograft survival in liver transplantation: is the relevance of HLA-A locus matching being underestimated?. Transpl Immunol 2012; 26: 88-93
  • 11 Terasaki P, Lachmann N, Cai J. Summary of the effect of de novo HLA antibodies on chronic kidney graft failure. Clin Transpl 2006; 455-462
  • 12 Bray RA, Gebel HM. Strategies for human leukocyte antigen antibody detection. Curr Opin Organ Transplant 2009; 14: 392-397
  • 13 Sutherland SM, Li L, Sigdel TK. et al. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int 2009; 76: 1277-1283
  • 14 Glotz D, Lucchiari N, Pegaz-Fiornet B. et al. Endothelial cells as targets of allograft rejection. Transplantation 2006; 82: S19-S21
  • 15 Opelz G. Collaborative Transplant Study. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 2005; 365: 1570-1576
  • 16 Israni A, Leduc R, Holmes J. et al. Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation. Transplantation 2010; 90: 1401-1408
  • 17 Dhillon N, Walsh L, Kruger B. et al. A single nucleotide polymorphism of Toll-like receptor 4 identifies the risk of developing graft failure after liver transplantation. J Hepatol 2010; 53: 67-72
  • 18 Ducloux D, Deschamps M, Yannaraki M. et al. Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int 2005; 67: 2454-2461
  • 19 Varagunam M, Yaqoob MM, Dohler B. et al. C3 polymorphisms and allograft outcome in renal transplantation. N Engl J Med 2009; 360: 874-880
  • 20 Brown KM, Kondeatis E, Vaughan RW. et al. Influence of donor C3 allotype on late renal-transplantation outcome. N Engl J Med 2006; 354: 2014-2023
  • 21 Vondran FW, Timrott K, Tross J. et al. Association of high anti-donor alloreactivity and low frequency of FoxP3-expressing cells prior to kidney transplantation with acute graft rejection. Clin Transplant 2011; 25: 905-914
  • 22 Heidt S, San Segundo D, Shankar S. et al. Peripheral blood sampling for the detection of allograft rejection: biomarker identification and validation. Transplantation 2011; 92: 1-9
  • 23 Heeger PS, Greenspan NS, Kuhlenschmidt S. et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J Immunol 1999; 163: 2267-2275
  • 24 Hricik DE, Rodriguez V, Riley J. et al. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am J Transplant 2003; 3: 878-884
  • 25 Reinsmoen NL, Cornett KM, Kloehn R. et al. Pretransplant donor-specific and non-specific immune parameters associated with early acute rejection. Transplantation 2008; 85: 462-470
  • 26 Pelzl S, Opelz G, Daniel V. et al. Evaluation of posttransplantation soluble CD30 for diagnosis of acute renal allograft rejection. Transplantation 2003; 75: 421-423
  • 27 Susal C, Pelzl S, Dohler B. et al. Identification of highly responsive kidney transplant recipients using pretransplant soluble CD30. J Am Soc Nephrol 2002; 13: 1650-1656
  • 28 Vasconcellos LM, Schachter AD, Zheng XX. et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation 1998; 66: 562-566
  • 29 Choy JC. Granzymes and perforin in solid organ transplant rejection. Cell Death Differ 2010; 17: 567-576
  • 30 Galante NZ, Camara NO, Kallas EG. et al. Noninvasive immune monitoring assessed by flow cytometry and real time RT-PCR in urine of renal transplantation recipients. Transpl Immunol 2006; 16: 73-80
  • 31 Rotondi M, Rosati A, Buonamano A. et al. High pretransplant serum levels of CXCL10/IP-10 are related to increased risk of renal allograft failure. Am J Transplant 2004; 4: 1466-1474
  • 32 Rotondi M, Netti GS, Lazzeri E. et al. High pretransplant serum levels of CXCL9 are associated with increased risk of acute rejection and graft failure in kidney graft recipients. Transpl Int 2010; 23: 465-475
  • 33 Schaub S, Nickerson P, Rush D. et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am J Transplant 2009; 9: 1347-1353
  • 34 Belperio JA, Keane MP, Burdick MD. et al. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol 2003; 171: 4844-4852
  • 35 Heidt S, Shankar S, Muthusamy AS. et al. Pretransplant serum CXCL9 and CXCL10 levels fail to predict acute rejection in kidney transplant recipients receiving induction therapy. Transplantation 2011; 91: e59-e61
  • 36 Chen R, Sigdel TK, Li L. et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions. PLoS Comput Biol 2010; 6: e1000940
  • 37 Dall A, Hariharan S. BK virus nephritis after renal transplantation. Clin J Am Soc Nephrol 2008; 3 (Suppl. 02) S68-S75
  • 38 Ling XB, Sigdel TK, Lau K. et al. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J Am Soc Nephrol 2010; 21: 646-653
  • 39 Brodsky SV, Facciuto ME, Heydt D. et al. Dynamics of circulating microparticles in liver transplant patients. J Gastrointestin Liver Dis 2008; 17: 261-268
  • 40 Morel O, Ohlmann P, Epailly E. et al. Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection. J Heart Lung Transplant 2008; 27: 38-45
  • 41 Harris A, Krams SM, Martinez OM. MicroRNAs as immune regulators: implications for transplantation. Am J Transplant 2010; 10: 713-719
  • 42 Anglicheau D, Sharma VK, Ding R. et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA 2009; 106: 5330-5335
  • 43 Anglicheau D, Muthukumar T, Suthanthiran M. MicroRNAs: small RNAs with big effects. Transplantation 2010; 90: 105-112
  • 44 Sarwal M, Chua MS, Kambham N. et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med 2003; 349: 125-138
  • 45 Flechner SM, Kurian SM, Head SR. et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am J Transplant 2004; 4: 1475-1489
  • 46 Haas M. Pathologic features of antibody-mediated rejection in renal allografts: an expanding spectrum. Curr Opin Nephrol Hypertens 2012; 21: 264-271
  • 47 Sis B, Jhangri GS, Bunnag S. et al. Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4 d staining. Am J Transplant 2009; 9: 2312-2323
  • 48 Zarkhin V, Lovelace PA, Li L. et al. Phenotypic evaluation of B-cell subsets after rituximab for treatment of acute renal allograft rejection in pediatric recipients. Transplantation 2011; 91: 1010-1018
  • 49 Dragun D, Muller DN, Brasen JH. et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 2005; 352: 558-569
  • 50 Malyszko J, Koc-Zorawska E, Malyszko JS. et al. Kidney injury molecule-1 correlates with kidney function in renal allograft recipients. Transplant Proc 2010; 42: 3957-3959
  • 51 Ashton-Chess J, Giral M, Mengel M. et al. Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection. J Am Soc Nephrol 2008; 19: 1116-1127
  • 52 Kurian SM, Heilman R, Mondala TS. et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS One 2009; 4: e6212
  • 53 Ihn H. Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol 2002; 14: 681-685
  • 54 Shi Y, Tu Z, Bao J. et al. Urinary connective tissue growth factor increases far earlier than histopathological damage and functional deterioration in early chronic renal allograft injury. Scand J Urol Nephrol 2009; 43: 390-399
  • 55 Ho J, Rush DN, Gibson IW. et al. Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts. Transplantation 2010; 90: 394-400
  • 56 Quintana LF, Sole-Gonzalez A, Kalko SG. et al. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J Am Soc Nephrol 2009; 20: 428-435
  • 57 Knechtle SJ. Development of tolerogenic strategies in the clinic. Philos Trans R Soc Lond B Biol Sci 2005; 360: 1739-1746
  • 58 Najafian N, Albin MJ, Newell KA. How can we measure immunologic tolerance in humans?. J Am Soc Nephrol 2006; 17: 2652-2663
  • 59 Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation. Am J Transplant 2006; 6: 1774-1780
  • 60 Li Y, Koshiba T, Yoshizawa A. et al. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am J Transplant 2004; 4: 2118-2125
  • 61 Segundo DS, Ruiz JC, Izquierdo M. et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation 2006; 82: 550-557
  • 62 Pallier A, Hillion S, Danger R. et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int 2010; 78: 503-513
  • 63 Martinez-Llordella M, Lozano JJ, Puig-Pey I. et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J Clin Invest 2008; 118: 2845-2857
  • 64 Brouard S, Mansfield E, Braud C. et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci U S A 2007; 104: 15448-15453
  • 65 Sagoo P, Perucha E, Sawitzki B. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 2010; 120: 1848-1861
  • 66 Newell KA, Asare A, Kirk AD. et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest 2010; 120: 1836-1847
  • 67 Visscher PM, Brown MA, McCarthy MI. et al. Five years of GWAS discovery. Am J Hum Genet 2012; 90: 7-24