Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(2): 219-222
DOI: 10.1055/s-0032-1317932
DOI: 10.1055/s-0032-1317932
letter
Formal Synthesis of 3-Deoxy-d-manno-Octulosonic Acid (KDO) and 3-Deoxy-d-arabino-2-heptulosonic Acid (DAH)
Further Information
Publication History
Received: 05 November 2012
Accepted after revision: 28 November 2012
Publication Date:
21 December 2012 (online)

Abstract
Practical synthetic routes to 3-deoxy-d-manno-octulosonic acid (KDO) and 3-deoxy-d-arabino-2-heptulosonic acid (DAH) from common sugar substrates are reported. Chain homologation of the sugar substrates was accomplished by Wittig olefination and Corey–Fuchs alkynylation. A new cyclization strategy was investigated to access the desired pyranosyl isomer of the KDO target.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Unger FM. Adv. Carbohydr. Chem. Biochem. 1981; 38: 323 ; and references therein cited
- 1b Cipolla L, Gabrielli L, Bini D, Russo L, Shaikh N. Nat. Prod. Rep. 2010; 27: 1618
- 2 York WS, Darvill AG, McNeil M, Albershein P. Carbohydr. Res. 1985; 138: 109
- 3 Corfield AP, Schauer R. Sialic Acids, Chemistry, Metabolism and Function . In Cell Biology Monographs . Vol. 10. Schauer R. Springer; Vienna: 1982: 195-261
- 4 Holst O, Brade H In Bacterial Endotoxic Lipopolysaccharides . Vol. 1. Morrison DC, Ryan JL. CRC; Boca Raton: 1992: 135
- 5a Reiner M, Schmidt RR. Tetrahedron: Asymmetry 2000; 11: 319
- 5b Sarabia F, Chammaa S, López Herrera FJ. Tetrahedron 2001; 57: 10271
- 5c Barco A, Bassetti L, Benetti S, Bertolasi V, De Risi C, Marchetti P, Pollini GP. Tetrahedron 2002; 58: 8553
- 5d Hekking KW. F, van Delft FL, Rutjes FP. J. T. Tetrahedron 2003; 59: 6751
- 5e Hartmann K, Kim BG, Linker T. Synlett 2004; 2728
- 5f Kuboki A, Tajimi T, Tokuda Y, Kato D, Sugai T, Ohira S. Tetrahedron Lett. 2004; 45: 4545
- 5g Hsu C.-C, Hong Z, Wada M, Franke D, Wong C.-H. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 9122
- 5h Hekking KF. W, Moelands MA. H, van Delft FL, Rutjes FP. J. T. J. Org. Chem. 2006; 71: 6444
- 5i Tanaka H, Takahashi D, Takahashi T. Angew. Chem. Int. Ed. 2006; 45: 770
- 5j Ichiyanagi T, Sakamoto N, Ochi K, Yamasaki R. J. Carbohydr. Chem. 2009; 28: 53
- 5k Kosma P, Hofinger A, Mueller LS, Brade H. Carbohydr. Res. 2010; 345: 704
- 5l Winzar R, Philips J, Kiefel MJ. Synlett 2010; 583
- 5m Ichiyanagi T, Fukunaga M, Tagashira R, Hayashi S, Yamasaki R, Nanjo M. Tetrahedron 2011; 67: 5964
- 5n Qian Y, Feng J, Pervez M, Ling CC. J. Org. Chem. 2011; 77: 96
- 5o Boltje TJ, Zhong W, Park J, Wolfert MA, Chen W, Boons GJ. J. Am. Chem. Soc. 2012; 134: 14255
- 5p Yoshizaki H, Fukuda N, Sato K, Oikawa M, Fukase K, Suda Y, Kusumoto S. Angew. Chem. Int. Ed. 2001; 40: 1475
- 5q Tanaka H, Takahashi D, Takahashi T. Angew. Chem. Int. Ed. 2006; 45: 770
- 5r Blaukopf M, Müller B, Hofinger A, Kosma P. Eur. J. Org. Chem. 2012; 119
- 6a Claesson A, Jansson AM, Pring BG, Hammond SM, Ekstroem B. J. Med. Chem. 1987; 30: 2309
- 6b Adachi H, Kondo K.-I, Kojima F, Umezawa Y, Ishino K, Hotta K, Nishimura Y. Nat. Prod. Res., Part B 2006; 20: 361
- 7 Danishefsky SJ, Pearson WH, Segmuller BE. J. Am. Chem. Soc. 1985; 107: 1280
- 8 Mlynarski J, Banaszek A. Tetrahedron 1999; 55: 2785
- 9 Gao J, Harter R, Gordon DM, Whitesides GM. J. Org. Chem. 1994; 59: 3714
- 10 Li LS, Wu YL. Tetrahedron 2002; 58: 9049
- 12 Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 3769
- 13 Hofmeister H, Annen K, Laurent H, Wiechert R. Angew. Chem., Int. Ed. Engl. 1984; 23: 727
- 14 Nicolaou KC, Webber SE. Synthesis 1986; 453
- 15 Higashibashi S, Shinko K, Ishizu T, Hashimoto K, Shirahama H, Nakata M. Synlett 2000; 1306
- 16 This step produced a mixture of pyranose and furanose isomers. For the acid-catalyzed cyclization, see: Tsukamoto S, Takahashi T. Tetrahedron Lett. 1997; 38: 6415
- 17 Analytical data of 7: [α]D 33 +22.8 (c 0.326, CHCl3) {Lit. 5h [α] d 22 +21.1 (c 0.25 in CHCl3)}. 1H NMR (400 MHz, CDCl3): δ = 7.42–7.21 (m, 5 H), 4.91 (d, J = 11.6 Hz, 1 H), 4.75 (d, J = 11.6 Hz, 1 H), 4.36 (dd, J = 12.9, 6.7 Hz, 1 H), 4.23–4.15 (m, 2 H), 4.09 (dd, J = 8.3, 6.4 Hz, 1 H), 3.96 (dd, J = 8.3, 7.7 Hz, 1 H), 3.91 (t, J = 4.5 Hz, 1 H), 2.60 (td, J = 2.9, 6.5 Hz, 1 H), 2.03 (t, J = 2.6 Hz, 1 H), 1.50 (s, 3 H), 1.41 (s, 3 H), 1.36 (s, 3 H), 1.34 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ = 138.3, 128.2, 127.3, 127.2, 108.8, 108.4, 80.5, 78.9, 77.7, 77.0, 75.4, 73.6, 70.1, 66.3, 26.9, 26.2, 25.6, 24.9, 20.3. HRMS (ESI): m/z [M + Na]+ calcd for C15H24O8Na: 355.1355; found: 355.1363
- 18 Fukase K, Kamikawa T, Iwai Y, Shiba T, Rietschel ET, Kusumoto S. Bull. Chem. Soc. Jpn. 1991; 64: 3267
- 19 Collam CS, Lowry TL. J. Chem. Educ. 2001; 78: 73
- 20 Analytical data of 14: [α]D 33 +25.94 (c 0.175, CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.45–7.12 (m, 15 H), 4.91 (d, J = 10.6 Hz, 1 H), 4.65 (dd, J = 17.3, 11.6 Hz, 2 H), 4.59 (d, J = 12.2 Hz, 1 H), 4.57 (d, J = 10.6 Hz, 1 H), 4.51 (d, J = 12.2 Hz, 1 H), 4.04 (m, 1 H), 3.83 (s, 3 H), 3.82–3.57 (m, 4 H), 2.30 (dd, J = 12.6, 5.0 Hz, 1 H), 2.09 (t, J = 12.6 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 170.3, 138.4, 138.3, 138.2, 128.4, 128.3, 127.9, 127.8, 127.6, 127.6, 127.5, 94.9, 78.0, 77.5, 74.9, 73.3, 73.1, 71.8, 68.9, 53.3, 36.1; HRMS (ESI): m/z [M + Na]+ calcd for C29H32O7Na: 515.2030; found: 515.2040
For recent syntheses of KDO and their analogues, see:
For KDO glycosylation see: