Synlett 2012; 23(19): 2835-2839
DOI: 10.1055/s-0032-1317525
letter
© Georg Thieme Verlag Stuttgart · New York

Desulfurization–Oxygenation of Chiral 1,3-Thiazolidine-2-thiones and 1,3-Oxazolidine-2-thiones Using Propylene Oxide and Microwave Irradiation

Leticia Minor-Villar
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México   Fax: +52(722)2173890   Email: mromeroo@uaemex.mx
,
Rodolfo Tello-Aburto
b   Medicinal and Natural Products Chemistry, The University of Iowa, Iowa City, IA 52242, USA
,
Horacio F. Olivo
b   Medicinal and Natural Products Chemistry, The University of Iowa, Iowa City, IA 52242, USA
,
Aydee Fuentes
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México   Fax: +52(722)2173890   Email: mromeroo@uaemex.mx
,
Moises Romero-Ortega*
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México   Fax: +52(722)2173890   Email: mromeroo@uaemex.mx
› Author Affiliations
Further Information

Publication History

Received: 17 August 2012

Accepted after revision: 10 October 2012

Publication Date:
09 November 2012 (online)


Abstract

An efficient method for the desulfurization–oxygenation of 1,3-thiazolidine-2-thiones and 1,3-oxazolidine-2-thiones using propylene oxide and employing microwave irradiation is described. This strategy of oxygenation of the thiocarbonyl group provides an attractive methodology to prepare chiral 1,3-thiazolidin-2-ones and 1,3-oxazolidin-2-ones from the corresponding precursors in good yields.

 
  • References

    • 2a Ager DJ, Prakash I, Schaad DR. Aldrichimica Acta 1997; 30: 3
    • 2b Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835
    • 2c Evans DA. Aldrichimica Acta 1982; 15: 23
    • 3a Evans DA, Ellman JA. J. Am. Chem. Soc. 1989; 111: 1063
    • 3b Velazquez F, Olivo HF. Curr. Org. Chem. 2002; 6: 303
    • 3c Crimmins MT, Shamszad M. Org. Lett. 2007; 9: 149
    • 3d Osorio-Lozada A, Olivo HF. Org. Lett. 2008; 10: 617
    • 4a Ortiz A, Sansinenea E. J. Sulfur Chem. 2007; 28: 1
    • 4b Yan TH, Hung AW, Lee HC, Chang CS, Liu WH. J. Org. Chem. 1995; 60: 3301
    • 4c Guz NR, Phillips AJ. Org. Lett. 2002; 4: 2253
    • 5a Evans DA, Bartroli J, Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
    • 5b Nerz-Stormnes M, Thornton ER. J. Org. Chem. 1991; 56: 2489
    • 6a Nagao Y, Hagiwara Y, Kumagai T, Ochiai M, Inoue T, Hashimoto K, Fujita E. J. Org. Chem. 1986; 51: 2391
    • 6b Nagao Y, Yamada S, Kumagai T, Ochiai M, Fujita E. J. Chem. Soc., Chem. Commun. 1985; 1418
    • 6c Gonzalez A, Aiguade J, Urpi F, Vilarrasa J. Tetrahedron Lett. 1996; 37: 8949
    • 6d Romero-Ortega M, Colby DA, Olivo HF. Tetrahedron Lett. 2002; 43: 6439
  • 7 Mukhtar TA, Wright GD. Chem. Rev. 2005; 105: 529
    • 8a Diekema DJ, Jones RN. Lancet 2001; 358: 1975
    • 8b Jones RN, Moet GJ, Sader HS, Mendes RE, Castanhira M. J. Antimicrob. Chemother. 2009; 63: 716
  • 9 Crimmins MT, King BW, Tabet EA. J. Am. Chem. Soc. 1997; 119: 7883
  • 10 Crimmins MT, Chaudhary K. Org. Lett. 2000; 2: 775
  • 11 Sabala R, Hernandez-Garcia L, Ortiz A, Romero M, Olivo HF. Org. Lett. 2010; 19: 4268
    • 12a Palomo C, Oiarbide M, Dias F, Ortiz A, Linden A. J. Am. Chem. Soc. 2001; 123: 5602
    • 12b Ortiz A, Quintero L, Hernandez H, Maldonado S, Mendoza G, Bernes S. Tetrahedron Lett. 2003; 44: 1129
    • 12c Palomo C, Oiarbide M, Lopez R, Gonzalez PB, Gomez-Bengoa E, Sa JM, Linden A. J. Am. Chem. Soc. 2006; 128: 15236
    • 13a Shibahara F, Suenami A, Yoshida A, Murai T. Chem. Commun. 2007; 2354
    • 13b Mohammadpoor-Baltork I, Khodaei MM, Nikoofar K. Tetrahedron Lett. 2003; 44: 591
    • 13c Kim YH, Chung BC, Chang S. Tetrahedron Lett. 1985; 26: 1079
    • 13d Jorgensen KA, El-Wassimy MT. M, Lawesson SO. Tetrahedron 1983; 39: 469
    • 13e Kochhar KS, Cottrell DA, Pinnick HW. Tetrahedron Lett. 1983; 24: 1323
  • 14 Deng X, Chen N, Wang Z, Li X, Hu H, Xu J. Phosphorus, Sulfur Silicon 2011; 186: 1563
    • 15a Sattigery VJ, Palle VP, Khera MK, Reddy R, Tiwari MK, Soni A, Abdul Rauf AR, Joseph S, Musib A, Dastidar SG, Srivastava PK. Int. Patent WO 2008023336, 2008 ; Chem. Abstr. 2008, 148, 308571.
    • 15b Calo V, Nacci A, Volpe A. Gazz. Chim. Ital. 1997; 127: 283
  • 16 Kitoh S.-I, Kubota A, Kunimoto K.-K, Kuwae A, Hanai K. J. Molec. Struct. 2005; 737: 277
    • 17a Wilmore BH, Cassidy PB, Warters RL, Roberts JC. J. Med. Chem. 2001; 44: 2661
    • 17b D’Amico JJ, Bollinger FG, Freeman JJ. J. Heterocycl. Chem. 1988; 25: 1503
  • 18 White JD, Kawasaki M. J. Org. Chem. 1992; 57: 5292
  • 19 Dickman DA, Meyers AI, Smith GA, Gawley RE. Org. Synth. 1985; 63: 136
    • 20a Delaunay D, Toupet L, Le Corre M. J. Org. Chem. 1995; 60: 6604
    • 20b Galvez E, Romea P, Urpi F. Org. Synth. 2009; 86: 70
    • 20c Crimmins MT, Christie HS, Hughes CO. Org. Synth. 2011; 88: 364
    • 20d Morales-Nava R, Fernandez-Zertuche M, Ordonez M. Molecules 2011; 16: 8803
  • 21 Wu Y, Yang YQ, Hu Q. J. Org. Chem. 2004; 69: 3990
  • 22 Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
  • 23 General Procedure for the Synthesis of 1,3-Thiazolidin-2-ones 4 and 1,3-Oxazolidin-2-ones 1 under Thermal Conditions: A solution of thiazolidine-2-thione 2 or oxazolidine-2-thione 3 (1.0 mmol) in propylene oxide (2.5 mL) was heated in a sealed tube at 100 °C under nitrogen during 48 h. The reaction mixture was then allowed to cool to r.t. and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography eluting with hexanes–EtOAc (4:1) for the 1,3-thiazolidin-2-ones and hexanes–EtOAc (3:2) for the 1,3-oxazolidin-2-ones to give analytically pure products 4 and 1. General Procedure for the Synthesis of 1,3-Thiazolidin-2-ones 4 and 1,3-Oxazolidin-2-ones 1 using Microwave Irradiation: To a solution of thiazolidine-2-thione 2 or oxazolidine-2-thione 3 (1.0 mmol) in CHCl3 (1.5 mL) was added propylene oxide (1.5 mL) in a 10-mL vessel with a screw cap under a nitrogen blanket. The reaction mixture was heated at 150 °C (hold time 60 min, ramp time 1–2 min). After cooling (cool down, 50 °C, 2 min), the reaction mixture was allowed to cool to r.t. and the solvent was removed under reduced pressure. The residue was purified by silica gel flash column chromatography eluting with hexanes–EtOAc (4:1) for 1,3-thiazolidin-2-ones and hexanes–EtOAc (3:2) for 1,3-oxazolidin-2-ones to give analytically pure products 4 and 1, respectively. (4S)-Isopropyl-1,3-thiazolidin-2-one (4a): was obtained as a white solid after purification by flash column chromatography; mp 75–76 °C (CH2Cl2–hexanes); [α]24 D +19.2 (c = 0.5, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 6.96 (br, 1 H), 3.60–3.68 (dt, J = 7.8, 15.3 Hz, 1 H), 3.35 (dd, J = 7.5, 10.9 Hz, 1 H), 3.16 (dd, J = 8.2, 10.9 Hz, 1 H), 1.77–1.89 (m, 1 H), 1.01 (d, J = 6.7 Hz, 3 H), 0.96 (d, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 175.8, 61.4, 32.5, 32.4, 18.7, 18.1. HRMS: m/z calcd for C6H11NOS: 145.0556; found: 145.0562. (4S)-4-Benzyl-1,3-thiazolidin-2-one (4b): was obtained as a white solid after purification by flash column chromatography; mp 69–70 °C (CH2Cl2–hexanes); [α]25 D –9.6 (c = 0.5, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.23–7.36 (m, 3 H), 7.16–7.20 (m, 2 H), 6.01 (br, 1 H), 4.07 (m, 1 H), 3.43 (dd, J = 7.2, 11.1 Hz, 1 H), 3.17 (dd, J = 6.3, 11.1 Hz, 1 H), 2.93 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 174.8, 136.4, 129.0, 128.9, 127.1, 56.5, 40.9, 34.3. HRMS: m/z calcd for C10H11NOS: 193.0556; found: 193.0555. (4R)-Phenyl-1,3-thiazolidin-2-one (4c): was obtained as a white solid after purification by flash column chromatography; mp 162–164 °C (CH2Cl2–hexanes); [α]24 D –86.4 (c = 0.5, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.61 (br, 1 H), 7.32–7.39 (m, 5 H), 4.94 (td, J = 0.9, 7.5 Hz, 1 H), 3.68 (dd, J = 7.5, 11.0 Hz, 1 H), 3.26 (dd, J = 7.7, 11.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 174.2, 139.9, 128.3, 127.8, 125.5, 58.4, 37.0. HRMS: m/z calcd for C9H9NOS: 179.0399; found: 179.0390. (4R)-Methyl-1,3-thiazolidin-2-one (4d): was obtained as a white solid after purification by flash column chromatography; mp 40–42 °C (CH2Cl2–hexanes); [α]24 D +12.80 (c = 0.5, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 6.70 (br, 1 H), 3.99–4.06 (m, 1 H), 3.47 (dd, J = 7.2, 10.8 Hz, 1 H), 3.04 (dd, J = 7.2, 10.8 Hz, 1 H), 1.34 (d, J = 6.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 175.4, 51.2, 36.5, 20.5. (4R,5S)-Indano[1,2-d]-1,3-thiazolidine-2-one (4e): was obtained as a white solid after purification by flash column chromatography; mp 195–196 °C (CH2Cl2–hexanes); [α]23 D +3.2 (c = 0.5 CHCl3). 1H NMR (500 MHz, CDCl3–DMSO): δ = 8.21 (br, 1 H), 7.37–7.39 (m, 1 H), 7.24–7.31 (m, 3 H), 5.17 (d, J = 7.5 Hz, 1 H), 4.67 (td, J = 3.0, 7.5 Hz, 1 H), 3.48 (dd, J = 7.5, 17.0 Hz, 1 H), 3.20 (dd, J = 3.0, 17.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3–DMSO): δ = 173.1, 140.3, 139.4, 128.2, 126.9, 124.5, 124.3, 63.0, 46.7. HRMS: m/z calcd for C10H9NOS: 191.0399; found: 191.0393.