Synlett 2012; 23(15): 2274-2278
DOI: 10.1055/s-0032-1317030
letter
© Georg Thieme Verlag Stuttgart · New York

Isocyanide-Based Multicomponent [2+2+1]-Cycloaddition Strategy to Construct Functionalized Spirocyclic Oxindoles

Haohua Jie
a   Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. of China, Fax: +86(21)66132408   Email: lijian@shu.edu.cn
,
Jian Li*
a   Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. of China, Fax: +86(21)66132408   Email: lijian@shu.edu.cn
,
Chunju Li
a   Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. of China, Fax: +86(21)66132408   Email: lijian@shu.edu.cn
,
Xueshun Jia*
a   Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. of China, Fax: +86(21)66132408   Email: lijian@shu.edu.cn
b   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China, Email: xsjia@mail.shu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 16 June 2012

Accepted: 12 July 2012

Publication Date:
14 August 2012 (online)


Abstract

Isocyanide-based three-component [2+2+1]-cyclo­addition reactions from isocyanides, activated alkynes, and isatylidene malononitriles were investigated to provide a new access to spirocyclic oxindole with five-membered carbon rings. The displacement of isatylidene malononitrile with oxindolylideneacetate essentially results in opposite regioselectivity, which adds to its ­attractiveness.

Supporting Information

 
  • References and Notes

    • 1a Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 1b Williams RM, Cox RJ. Acc. Chem. Res. 2003; 36: 127
    • 1c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1d Trost BM, Jiang C. Synthesis 2006; 369
    • 2a Gallagher G, Lavanchi PG, Wilson JW, Hieble J, Demmarinis RM. J. Med. Chem. 1985; 28: 1533
    • 2b Nagata R, Tokunaga T, Hume W, Umezone T, Okazaki U, Ueki Y, Kumagai K, Hourai S, Nagamine J, Seki H, Taiji M, Noguchi H. J. Med. Chem. 2001; 44: 4641
    • 2c Venkatesan H, Davis MC, Altas Y, Snyder JP, Liotta DC. J. Org. Chem. 2001; 66: 3653
    • 2d Lo MM.-C, Neumann CS, Nagayama S, Perlstein EO, Schreiber SL. J. Am. Chem. Soc. 2004; 126: 16077
    • 3a Greshock TJ, Grubbs AW, Tsukamoto S, Williams RM. Angew. Chem. Int. Ed. 2007; 46: 2262
    • 3b Grubbs AW, Artman GD. III, Tsukamoto S, Williams RM. Angew. Chem. Int. Ed. 2007; 46: 2257
    • 3c Greshock TJ, Grubbs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM. Angew. Chem. Int. Ed. 2008; 47: 3573
    • 3d Trost BM, Cramer N, Bernsmann H. J. Am. Chem. Soc. 2007; 129: 3086
    • 4a Trost BM, Cramer N, Silverma SM. J. Am. Chem. Soc. 2007; 129: 12396
    • 4b Trost BM, Cramer N, Bernsmann H. J. Am. Chem. Soc. 2007; 129: 3086
    • 4c For relevant palladium-catalyzed double cyclization, see: Jaegli S, Erb W, Retailleau P, Vors J.-P, Neuville L, Zhu J. Chem.–Eur. J. 2010; 16: 5863
    • 4d Jaegli S, Dufour J, Wei H.-L, Piou T, Duan X.-H, Vors JP, Neuville L, Zhu J. Org. Lett. 2010; 12: 4498
    • 4e Ruck RT, Huffman MA, Kim MM, Shevlin M, Kandur WV, Davies IW. Angew. Chem. Int. Ed. 2008; 47: 4711
    • 5a England DB, Merey G, Padwa A. Org. Lett. 2007; 9: 3805
    • 5b For MgI2-catalyzed ring expansion methodologies, see: Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
    • 5c Lerchner A, Carreira EM. J. Am. Chem. Soc. 2002; 124: 14826
    • 5d Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
    • 5e Bencivenni G, Wu L.-Y, Mazzanti A, Giannichi B, Pesciaioli F, Song M.-P, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 7200
    • 5f Chen X.-H, Wei Q, Luo S.-W, Xiao H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 13819
    • 5g Westermann B, Ayaz M, Berkel SS. Angew. Chem. Int. Ed. 2010; 49: 846
    • 6a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 6b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 7a Baran PS, Richter JM. J. Am. Chem. Soc. 2005; 127: 15394
    • 7b Yamazaki M, Okuyama E. Tetrahedron Lett. 1981; 22: 135
    • 7c Zhou X, Xiao T, Iwama Y, Qin Y. Angew. Chem. Int. Ed. 2012; 51: 4909
    • 7d Mugishima T, Tsuda M, Kasai Y, Ishiyama H, Fukushi E, Kawabata J, Watanabe M, Akao K, Kobayashi J. J. Org. Chem. 2005; 70: 9430
    • 8a Zhu J, Bienaymé H. Multicomponent Reactions . Wiley-VCH; Weinheim: 2005
    • 8b Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 8c El Kaim L, Grimaud L. Tetrahedron 2009; 65: 2153
    • 8d Sunderhaus JD, Martin SF. Chem.–Eur. J. 2009; 15: 1300
    • 9a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 9b Zhu J. Eur. J. Org. Chem. 2003; 1133
    • 9c Dömling A. Chem. Rev. 2006; 106: 17
    • 9d Ganem B. Acc. Chem. Res. 2009; 42: 463
    • 10a Kielland N, Catti F, Bello D, Isambert N, Soteras I, Luque FJ, Lavilla R. Chem.–Eur. J. 2010; 16: 7904
    • 10b Mihara H, Xu Y, Shepherd NE, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 8384
    • 10c Pirrung MC, Ghorai S, Ibarra-Rivera TR. J. Org. Chem. 2009; 74: 4110
    • 10d Li X, Yan Y, Kan C, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 13225
    • 10e Yue T, Wang M.-X, Wang D.-X, Zhu J. Angew. Chem. Int. Ed. 2008; 47: 9454
    • 10f Yue T, Wang MX, Wang D.-X, Masson G, Zhu J. Angew. Chem. Int. Ed. 2009; 48: 6717
    • 10g Luzyanin KV, Tskhovrebov AG, Guedes da Silva MF. C, Haukka M, Pombeiro AJ. L, Kukushkin VY. Chem.–Eur. J. 2009; 15: 5969
    • 10h Dos Santos A, El Kaim L, Grimaud L, Ronsseray C. Chem. Commun. 2009; 3907
    • 11a Li J, Li SY, Li CJ, Liu YJ, Jia XS. Adv. Synth. Catal. 2010; 352: 336
    • 11b Li J, Liu YJ, Li CJ, Jia XS. Chem.–Eur. J. 2011; 17: 7409
    • 11c Li J, Liu YJ, Li CJ, Jia XS. Adv. Synth. Catal. 2011; 353: 913
    • 11d Li J, Liu YJ, Li CJ, Jia XS. Green Chem. 2012; 14: 1314
    • 11e Li J, Wang N, Li C, Jia X. Chem.–Eur. J. 2012; 18: 9645
    • 12a Tejedor D, García-Tellado F, Marrero-Tellado JJ, De Armas P. Chem.–Eur. J. 2003; 9: 3122
    • 12b Tejedor D, López-Toso S, González-Platas J, García-Tellado F. J. Org. Chem. 2007; 72: 5454
    • 12c De Armas P, García-Tellado F, Marrero-Tellado JJ, Tejedor D, Maestro MA, González-Platas J. Org. Lett. 2001; 3: 1905
    • 12d Tejedor D, Santos-Expósito A, González-Cruz D, Marrero-Tellado JJ, García-Tellado F. J. Org. Chem. 2005; 70: 1042
  • 14 See the Supporting Information for details
  • 15 CCDC 884218 (4b) and CCDC 884219 (4f) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif
  • 16 CCDC 884217 for compound 7a contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif
  • 17 General Experimental Procedure for 4: Isatylidene malononitrile 3 (0.5 mmol) was added to a solution of isocyanide 1 (0.5 mmol) and alkynoate 2 (0.6 mmol) in toluene (5 mL). The stirred mixture was heated to 100 °C for several hours and the progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel (silica: 200–300; PE–EtOAc) to afford the desired product 4. Compound 4a: Yellow solid; mp 194–196 °C. 1H NMR (500 MHz, CDCl3): δ = 7.53 (t, J = 7.5 Hz, 1 H), 7.46 (d, J = 7.5 Hz, 1 H), 7.22 (t, J = 7.5 Hz, 1 H), 7.11–7.03 (m, 4 H), 6.86 (s, 1 H), 4.05–3.94 (m, 2 H), 3.37 (s, 3 H), 2.20 (s, 6 H), 1.00 (t, J = 7.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 170.6, 161.8, 161.0, 149.7, 146.4, 144.8, 131.7, 131.5, 128.4, 126.6, 125.7, 125.4, 123.9, 123.1, 111.7, 110.6, 109.5, 68.3, 62.5, 62.4, 48.8, 38.9, 18.0, 13.7. HRMS: m/z [M + Na]+ calcd for C26H22N4O3: 461.1590; found: 461.1595.