Klin Monbl Augenheilkd 2012; 229(2): 126-134
DOI: 10.1055/s-0031-1299246
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Stellenwert der Scanning Laser Polarimetrie für die Glaukomdiagnostik

Clinical Value of Scanning Laser Polarimetry in Glaucoma Diagnostics
S. Kremmer
1   Augenklinik, Evangelisches Krankenhaus, Gelsenkirchen
2   Universitäts-Augenklinik Essen
,
G. Anastassiou
1   Augenklinik, Evangelisches Krankenhaus, Gelsenkirchen
2   Universitäts-Augenklinik Essen
,
J. M. Selbach
1   Augenklinik, Evangelisches Krankenhaus, Gelsenkirchen
2   Universitäts-Augenklinik Essen
› Author Affiliations
Further Information

Publication History

04 January 2012

16 January 2012

Publication Date:
14 February 2012 (online)

Zusammenfassung

Unter dem Begriff Glaukom ist eine Vielzahl unterschiedlicher Erkrankungen zusammengefasst, die gemeinsam haben, dass die retinalen Ganglienzellen und ihre Axone geschädigt werden. Unbehandelt können sie im weiteren Verlauf der Apoptose unterliegen und abgebaut werden, was zu charakteristischen Schäden am Sehnervenkopf, Gesichtsfeldausfällen und im schlimmsten Fall bis zur Erblindung führen kann. Um einen Glaukomschaden zu verhindern, ist eine möglichst frühzeitige Entdeckung von Veränderungen der retinalen Ganglienzellen und ihrer Axone sowie deren Verlaufskontrolle von besonderer Bedeutung, um eine adäquate Behandlung einleiten und deren Wirksamkeit kontrollieren zu können. In den letzten Jahren hat sich die Scanning-Laser-Polarimetrie mit dem GDx (Carl Zeiss Meditec, Dublin, USA) zunehmend in der klinischen Untersuchung der Nervenfaserschicht bei Glaukom etablieren können. Zum heutigen Zeitpunkt hat das GDx mit seiner hohen Auflösung, dem großen Komfort für Patienten und Untersucher und seinen gut reproduzierbaren Ergebnissen eine Schlüsselrolle in der aktuellen Glaukomdiagnostik. Insbesondere bei sonst schwer beurteilbaren Papillen (z. B. Mikro- oder Makropapillen), schrägem Sehnerveneintritt und Papillenanomalien (z. B. Drusenpapillen) bietet die moderne Nervenfaserdiagnostik mithilfe des GDx im klinischen Alltag eine wesentliche Bereicherung.

Abstract

The term glaucoma is used as a melting pot of many different diseases which have in common that the retinal ganglion cells and their axons are damaged. Untreated, apoptosis can be induced causing ganglion cell death which subsequently leads to typical glaucomatous damage at the optic nerve head, scotomas of the visual fields, and in the worst case scenario to blindness. It is well known that patients with glaucoma can suffer a 20 to 50 % loss of retinal ganglion cells before a defect becomes evident in standard white on white perimetry. To prevent glaucomatous damage, it is important to detect changes of the retinal ganglion cells and their nerve fibre layer as early as possible and to monitor their follow-up as closely as possible in order to find an adequate treatment of glaucoma, and to control its efficiency. In the past few years, scanning laser polarimetry by means of GDx technology (Carl Zeiss Meditec, Dublin, USA) could be established as a new method to measure the retinal nerve fibre layer not only qualitatively but even quantitatively. Presently, the GDx plays an important role in actual glaucoma diagnostics on account of its high resolution, the comfort for both patient and user, and its highly reproducible measurements. Especially in difficult evaluable optic nerve heads (e. g., micro- and macrodiscs), tilted discs, and optic disc anomalies (e. g., optic nerve drusen) modern nerve fibre diagnostics by means of GDx technology is a helpful enrichment in clinical routine.

 
  • Literatur

  • 1 Thylefors B, Négrel AD. The global impact of glaucoma. Bulletin of the global world health organisation 1994; 72 (03) 323-326
  • 2 Prokofyeva E, Zrenner E. Epidemiology of Major Eye Diseases Leading to Blindness in Europe: A Literature Review. Ophthalmic Res 2012; 47: 171-188 . Published online: November 26, 2011
  • 3 Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol 1973; 12: 814-829
  • 4 Sommer A, Katz J, Quigley HA et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991; 109: 77-83
  • 5 Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with normal visual fields. Ophthalmology 1993; 100: 587-598
  • 6 Mohammadi K, Bowd C, Weinreb RN et al. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138 (04) 592-601
  • 7 Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma, III: quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982; 100: 135-146
  • 8 Kerrigan-Baumrind LA, Quigley HA, Pease ME et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Inv Ophthalmol Vis Sci 2000; 41 (03) 741-748
  • 9 Vogt A. Herstellung eines gelb-blauen Lichtfiltrates, in welchem die Macula centralis in vivo in gelber Färbung erscheint, die Nervenfasern der Netzhaut und andere feine Einzelheiten derselben sichtbar werden, und der Grad der Gelbfärbung der Linse ophthalmoskopisch nachweisbar ist. Graefes Arch Clin Exp Ophthalmol 1913; 84: 293-311
  • 10 Vogt A. Die Nervenfaserstreifung der menschlichen Netzhaut mit besonderer Berücksichtigung der Differentialdiagnose gegenüber pathologischen streifenförmigen Reflexen (präretinale Fältelungen). Klin Monatsbl Augenheilkd 1917; 58: 399-411
  • 11 Hoyt WF, Friesen L, Newman NM. Funduscopy of nerve fiber layer defects in glaucoma. Inv Ophthalmol Vis Sci 1973; 12: 814-829
  • 12 Airaksinen PJ, Nieminen H. Retinal nerve fiber layer photography in glaucoma. Ophthalmology 1985; 92: 877-879
  • 13 Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disc and retinal nerve fiber layer abnormalities and their progression. Am J Ophtalmol 1991; 111: 485-490
  • 14 Quigley HA, Reacher M, Katz J et al. Quantitative grading of nerve fiber layer photographs. Ophthalmology 1993; 100: 1800-1807
  • 15 Niessen AG, van den Berg TJ, Langerhorst CT et al. Grading of retinal nerve fiber layer with a photographic reference set. Am J Ophthalmol 1995; 120 (05) 577-586
  • 16 Eikelboom RH, Cooper RL, Barry CJ. A study of variance in densitometry of retinal nerve fiber layer photographs in normals and glaucoma suspects. Inv Ophthalmol Vis Sci 1990; 31: 2373-2383
  • 17 Kremmer S, Ayertey HD, Selbach JM et al. Scanning laser polarimetry, retinal nerve fiber layer photography, and perimetry in the diagnosis of glaucomatous nerve fiber defects. Graefe’s Arch Clin Exp Ophthalmol 2000; 238: 922-926
  • 18 Choong YF, Rakebrandt F, North RV et al. Acutance, an objective measure of retinal nerve fibre image clarity. Br J Ophthalmol 2003; 87 (03) 322-326
  • 19 Hoffmann EM. Optic disc photography and retinal nerve fiber layer photography. Ophthalmologe 2009; 106 (08) 683-686
  • 20 Knighton RW, Baverez C, Bhattacharya A. The directional reflectance of the retinal nerve fiber layer of the toad. Inv Ophthalmol Vis Sci 1992; 33: 2603-2611
  • 21 Hermann J, Funk J. Wertigkeit der Nervenfaserfotografie in der Glaukomdiagnostik. Ophthalmologe 2005; 102 (08) 778-782
  • 22 Rohrschneider K, Kruse FE, Burk ROW et al. Documentation of the retinal nerve fiber layer with the scanning laser ophthalmoscope. Ophthalmologe 1995; 92: 515-520
  • 23 Miglior S, Rosetti L, Brigatti L et al. Reproducibility of retinal nerve fiber layer evaluation by dynamic scanning laser ophthalmoscopy (SLO, Rodenstock). Inv Ophthalmol Vis Sci 1992; 34: 1505
  • 24 Wiener O. Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh sächs akad Wiss, Math-Phys 1912; Kl 6 (32) 507-604
  • 25 Dreher AW, Reiter K. Retinal laser ellipsometry. A new method for measuring the retinal nerve fiber layer thickness distribution. Clin Vis Sci 1992; 7: 481-488
  • 26 Weinreb RN, Dreher AW, Coleman A et al. Histopathologic validation of Fourier-Ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophtalmol 1990; 108: 557-560
  • 27 Greenfield DS, Knighton RW, Feuer W et al. Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry. Am J Ophthalmol 2002; 134: 27-33
  • 28 Garway-Heath DF, Greaney MJ, Caprioli J. Correction for the erroneous compensation of anterior segment birefringence with the scanning laser polarimeter for glaucoma diagnosis. Inv Ophthalmol Vis Sci 2002; 43: 1465-1474
  • 29 Kremmer S, Garway-Heath DF, de Cilla S et al. Influence of cataract surgery with implantation of different intraocular lenses on scanning laser tomography and polarimetry. Am J Ophthalmol 2003; 136: 1016-1021
  • 30 Zhou Q, Weinreb RN. Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 2002; 43: 2221-2228
  • 31 Greenfield DS, Knighton RW, Feuer WJ et al. Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry. Am J Ophthalmol 2002; 134 (01) 27-33
  • 32 Reus NJ, Colen TP, Lemij HG. Visualization of localized retinal nerve fiber layer defects with GDx with individualized and with fixed compensation of anterior segment birefringence. Ophthalmology 2003; 110: 1512-1516
  • 33 Zangwill LM, Abunto T, Bowd C et al. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK. Ophthalmology 2005; 112 (02) 200-207
  • 34 Bowd C, Zangwill LM, Weinreb RN. Association between scanning laser polarimetry measurements using variable corneal polarisation compensation and visual field sensitivity in glaucomatous eyes. Arch Ophtalmol 2003; 121: 961-966
  • 35 Reus NJ, Lemij HG, Garway-Heath DF et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. Ophthalmology 2010; 117 (04) 717-723
  • 36 Medeiros FA, Alencar LM, Zangwill LM et al. Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 2009; 50 (04) 1675-1681
  • 37 Qiu K, Leung CKS, Weinreb RN et al. Predictors of atypical birefringence pattern in scanning laser polarimetry. Br J Ophthalmol 2009; 93: 1191-1194
  • 38 Morishita S, Tanabe T, Yu S et al. Retinal nerve fibre layer assessment in myopic glaucomatous eyes: comparison of GDx variable corneal compensation with GDx enhanced corneal compensation. Br J Ophthalmol 2008; 92 (10) 1377-1381
  • 39 Medeiros FA, Zangwill LM, Alencar LM et al. Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. Am J Ophthalmol 2010; 149 (06) 908-915
  • 40 Choi J, Kim KH, Lee CH et al. Relationship between retinal nerve fibre layer measurements and retinal sensitivity by scanning laser polarimetry with variable and enhanced corneal compensation. Br J Ophthalmol 2008; 92 (07) 906-911
  • 41 Bowd C, Tavares IM, Medeiros FA et al. Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology 2007; 114 (07) 1259-1265
  • 42 Sehi M, Ume S, Greenfield DS. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2007; 48 (05) 2099-2104
  • 43 Mai TA, Reus NJ, Lemij HG. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Invest Ophthalmol Vis Sci 2007; 48 (04) 1651-1658
  • 44 Tóth M, Holló G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol 2005; 89: 1139-1142
  • 45 Kremmer S, Keienburg M, Anastassiou G et al. Scanning Laser Topography and Scanning Laser Polarimetry: comparing both imaging methods at same distances from the optic nerve head. The Open Ophthalmology Journal 2012; : In press
  • 46 Kremmer S, Zadow T, Steuhl KP et al. Scanning laser polarimetry in myopic and hyperopic subjects. Graefes Arch Clin Exp Ophthalmol 2004; 242 (06) 489-494
  • 47 Munkwitz S, Funk J, Loeffler KU et al. Sensitivity and specificity of scanning laser polarimetry using the GDx. Br J Ophthalmol 2004; 88 (09) 1142-1145