Semin Respir Crit Care Med 2011; 32(6): 783-794
DOI: 10.1055/s-0031-1295726
© Thieme Medical Publishers

Antifungal PK/PD Considerations in Fungal Pulmonary Infections

Alexander J. Lepak1 , 2 , David R. Andes1 , 2
  • 1Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
  • 2Department of Medical Microbiology and Immunology, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
Further Information

Publication History

Publication Date:
13 December 2011 (online)

ABSTRACT

Pharmacokinetic/pharmacodynamic (PK/PD) studies examine the relationships of drug pharmacokinetic properties, in vitro drug potency, and treatment efficacy. Study results are integral to the design of optimal dosing strategies, prevention of toxicity, development and interpretation of susceptibility break points, and prevention and recognition of drug resistance. These principles are increasingly utilized to optimize therapy for pulmonary fungal pathogens such as Aspergillus species, although they have been underutilized for other difficult-to-treat fungal pathogens. Understanding the design and implementation of PK/PD studies facilitates more effective utilization of the available antifungal agents to improve outcomes for many of these life-threatening infections.

REFERENCES

  • 1 Craig W A. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men.  Clin Infect Dis. 1998;  26 (1) 1-10, quiz 11–12
  • 2 Ambrose P G, Bhavnani S M, Rubino C M et al.. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore.  Clin Infect Dis. 2007;  44 (1) 79-86
  • 3 Andes D. Clinical utility of antifungal pharmacokinetics and pharmacodynamics.  Curr Opin Infect Dis. 2004;  17 (6) 533-540
  • 4 Andes D. Pharmacokinetics and pharmacodynamics of antifungals.  Infect Dis Clin North Am. 2006;  20 (3) 679-697
  • 5 Groll A H, Lyman C A, Petraitis V et al.. Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations.  Antimicrob Agents Chemother. 2006;  50 (10) 3418-3423
  • 6 Lewis R E, Liao G, Hou J, Chamilos G, Prince R A, Kontoyiannis D P. Comparative analysis of amphotericin B lipid complex and liposomal amphotericin B kinetics of lung accumulation and fungal clearance in a murine model of acute invasive pulmonary aspergillosis.  Antimicrob Agents Chemother. 2007;  51 (4) 1253-1258
  • 7 Groll A H, Giri N, Petraitis V et al.. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system.  J Infect Dis. 2000;  182 (1) 274-282
  • 8 Drugs@FDA. Diflucan [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 9 Drugs@FDA. Vfend [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 10 Drugs@FDA. Sporanox [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 11 Drugs@FDA. Noxafil [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 12 O’Day D M, Foulds G, Williams T E, Robinson R D, Allen R H, Head W S. Ocular uptake of fluconazole following oral administration.  Arch Ophthalmol. 1990;  108 (7) 1006-1008
  • 13 Savani D V, Perfect J R, Cobo L M, Durack D T. Penetration of new azole compounds into the eye and efficacy in experimental Candida endophthalmitis.  Antimicrob Agents Chemother. 1987;  31 (1) 6-10
  • 14 Mian U K, Mayers M, Garg Y et al.. Comparison of fluconazole pharmacokinetics in serum, aqueous humor, vitreous humor, and cerebrospinal fluid following a single dose and at steady state.  J Ocul Pharmacol Ther. 1998;  14 (5) 459-471
  • 15 Arndt C A, Walsh T J, McCully C L, Balis F M, Pizzo P A, Poplack D G. Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system.  J Infect Dis. 1988;  157 (1) 178-180
  • 16 Foulds G, Brennan D R, Wajszczuk C et al.. Fluconazole penetration into cerebrospinal fluid in humans.  J Clin Pharmacol. 1988;  28 (4) 363-366
  • 17 Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole.  Br J Clin Pharmacol. 2003;  56 (Suppl 1) 17-23
  • 18 Lutsar I, Roffey S, Troke P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients.  Clin Infect Dis. 2003;  37 (5) 728-732
  • 19 Hariprasad S M, Mieler W F, Holz E R et al.. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans.  Arch Ophthalmol. 2004;  122 (1) 42-47
  • 20 Hyland R, Jones B C, Smith D A. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.  Drug Metab Dispos. 2003;  31 (5) 540-547
  • 21 Smith J, Safdar N, Knasinski V et al.. Voriconazole therapeutic drug monitoring.  Antimicrob Agents Chemother. 2006;  50 (4) 1570-1572
  • 22 Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes.  Clin Infect Dis. 2008;  46 (2) 201-211
  • 23 Denning D W, Ribaud P, Milpied N et al.. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis.  Clin Infect Dis. 2002;  34 (5) 563-571
  • 24 Barone J A, Moskovitz B L, Guarnieri J et al.. Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution versus capsules in healthy volunteers.  Antimicrob Agents Chemother. 1998;  42 (7) 1862-1865
  • 25 Van Peer A, Woestenborghs R, Heykants J, Gasparini R, Gauwenbergh G. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects.  Eur J Clin Pharmacol. 1989;  36 (4) 423-426
  • 26 Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole.  Eur J Clin Pharmacol. 1998;  54 (2) 159-161
  • 27 Lange D, Pavao J H, Wu J, Klausner M. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers.  J Clin Pharmacol. 1997;  37 (6) 535-540
  • 28 Barone J A, Koh J G, Bierman R H et al.. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers.  Antimicrob Agents Chemother. 1993;  37 (4) 778-784
  • 29 Johnson M D, Hamilton C D, Drew R H, Sanders L L, Pennick G J, Perfect J R. A randomized comparative study to determine the effect of omeprazole on the peak serum concentration of itraconazole oral solution.  J Antimicrob Chemother. 2003;  51 (2) 453-457
  • 30 Barone J A, Moskovitz B L, Guarnieri J et al.. Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers.  Pharmacotherapy. 1998;  18 (2) 295-301
  • 31 Van de Velde V J, Van Peer A P, Heykants J J et al.. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole.  Pharmacotherapy. 1996;  16 (3) 424-428
  • 32 Tucker R M, Denning D W, Arathoon E G, Rinaldi M G, Stevens D A. Itraconazole therapy for nonmeningeal coccidioidomycosis: clinical and laboratory observations.  J Am Acad Dermatol. 1990;  23 (3 Pt 2) 593-601
  • 33 Rex J H, Pfaller M A, Galgiani J N Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and candida infections.  Clin Infect Dis. 1997;  24 (2) 235-247
  • 34 Denning D W, Tucker R M, Hanson L H, Hamilton J R, Stevens D A. Itraconazole therapy for cryptococcal meningitis and cryptococcosis.  Arch Intern Med. 1989;  149 (10) 2301-2308
  • 35 Denning D W, Tucker R M, Hanson L H, Stevens D A. Treatment of invasive aspergillosis with itraconazole.  Am J Med. 1989;  86 (6 Pt 2) 791-800
  • 36 Gubbins P O, Krishna G, Sansone-Parsons A et al.. Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant recipients.  Antimicrob Agents Chemother. 2006;  50 (6) 1993-1999
  • 37 Ullmann A J, Cornely O A, Burchardt A et al.. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection.  Antimicrob Agents Chemother. 2006;  50 (2) 658-666
  • 38 Kosoglou T, Perentesis G P, Affrime M B et al.. The effect of antacid and cimetidine on the oral absorption of the antifungal agent SCH 39304.  J Clin Pharmacol. 1990;  30 (7) 638-642
  • 39 Krishna G, Moton A, Ma L, Medlock M M, McLeod J. Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers.  Antimicrob Agents Chemother. 2009;  53 (3) 958-966
  • 40 Jain R, Pottinger P. The effect of gastric acid on the absorption of posaconazole.  Clin Infect Dis. 2008;  46 (10) 1627, author reply 1627-1628
  • 41 Krieter P, Flannery B, Musick T, Gohdes M, Martinho M, Courtney R. Disposition of posaconazole following single-dose oral administration in healthy subjects.  Antimicrob Agents Chemother. 2004;  48 (9) 3543-3551
  • 42 Courtney R, Radwanski E, Lim J, Laughlin M. Pharmacokinetics of posaconazole coadministered with antacid in fasting or nonfasting healthy men.  Antimicrob Agents Chemother. 2004;  48 (3) 804-808
  • 43 Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults.  Br J Clin Pharmacol. 2004;  57 (2) 218-222
  • 44 Walsh T J, Raad I, Patterson T F et al.. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial.  Clin Infect Dis. 2007;  44 (1) 2-12
  • 45 Wexler D, Courtney R, Richards W, Banfield C, Lim J, Laughlin M. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study.  Eur J Pharm Sci. 2004;  21 (5) 645-653
  • 46 Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes.  Biol Pharm Bull. 2005;  28 (9) 1805-1808
  • 47 Nivoix Y, Levêque D, Herbrecht R, Koffel J C, Beretz L, Ubeaud-Sequier G. The enzymatic basis of drug-drug interactions with systemic triazole antifungals.  Clin Pharmacokinet. 2008;  47 (12) 779-792
  • 48 Drugs@FDA. Cancidas [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 49 Drugs@FDA. Mycamine [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 50 Drugs@FDA. Eraxis [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
  • 51 Turnidge J D, Gudmundsson S, Vogelman B, Craig W A. The postantibiotic effect of antifungal agents against common pathogenic yeasts.  J Antimicrob Chemother. 1994;  34 (1) 83-92
  • 52 Drusano G L. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’.  Nat Rev Microbiol. 2004;  2 (4) 289-300
  • 53 Warn P A, Morrissey J, Moore C B, Denning D W. In vivo activity of amphotericin B lipid complex in immunocompromised mice against fluconazole-resistant or fluconazole-susceptible Candida tropicalis.  Antimicrob Agents Chemother. 2000;  44 (10) 2664-2671
  • 54 Denning D W, Warn P. Dose range evaluation of liposomal nystatin and comparisons with amphotericin B and amphotericin B lipid complex in temporarily neutropenic mice infected with an isolate of Aspergillus fumigatus with reduced susceptibility to amphotericin B.  Antimicrob Agents Chemother. 1999;  43 (11) 2592-2599
  • 55 Klepser M E, Wolfe E J, Jones R N, Nightingale C H, Pfaller M A. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans.  Antimicrob Agents Chemother. 1997;  41 (6) 1392-1395
  • 56 Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model.  Antimicrob Agents Chemother. 2001;  45 (3) 922-926
  • 57 Andes D, Safdar N, Marchillo K, Conklin R. Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models.  Antimicrob Agents Chemother. 2006;  50 (2) 674-684
  • 58 Ernst E J, Klepser M E, Pfaller M A. Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans.  Antimicrob Agents Chemother. 2000;  44 (4) 1108-1111
  • 59 Ernst E J, Yodoi K, Roling E E, Klepser M E. Rates and extents of antifungal activities of amphotericin B, flucytosine, fluconazole, and voriconazole against Candida lusitaniae determined by microdilution, Etest, and time-kill methods.  Antimicrob Agents Chemother. 2002;  46 (2) 578-581
  • 60 Lewis R E, Wiederhold N P, Klepser M E. In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp.  Antimicrob Agents Chemother. 2005;  49 (3) 945-951
  • 61 Wiederhold N P, Tam V H, Chi J, Prince R A, Kontoyiannis D P, Lewis R E. Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma concentrations in a neutropenic murine model of invasive pulmonary aspergillosis.  Antimicrob Agents Chemother. 2006;  50 (2) 469-473
  • 62 Hong Y, Shaw P J, Nath C E et al.. Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases.  Antimicrob Agents Chemother. 2006;  50 (3) 935-942
  • 63 Andes D, van Ogtrop M. Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model.  Antimicrob Agents Chemother. 1999;  43 (9) 2116-2120
  • 64 Andes D, Marchillo K, Stamstad T, Conklin R. In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model.  Antimicrob Agents Chemother. 2003;  47 (4) 1193-1199
  • 65 Andes D, Marchillo K, Stamstad T, Conklin R. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model.  Antimicrob Agents Chemother. 2003;  47 (10) 3165-3169
  • 66 Andes D, Marchillo K, Conklin R et al.. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis.  Antimicrob Agents Chemother. 2004;  48 (1) 137-142
  • 67 Andes D, Forrest A, Lepak A, Nett J, Marchillo K, Lincoln L. Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans.  Antimicrob Agents Chemother. 2006;  50 (7) 2374-2383
  • 68 Ernst E J, Klepser M E, Pfaller M A. In vitro interaction of fluconazole and amphotericin B administered sequentially against Candida albicans: effect of concentration and exposure time.  Diagn Microbiol Infect Dis. 1998;  32 (3) 205-210
  • 69 Warn P A, Sharp A, Parmar A, Majithiya J, Denning D W, Hope W W. Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: mathematical modeling, importance of tissue concentrations, and impact of immune status on antifungal effect.  Antimicrob Agents Chemother. 2009;  53 (8) 3453-3461
  • 70 Louie A, Drusano G L, Banerjee P et al.. Pharmacodynamics of fluconazole in a murine model of systemic candidiasis.  Antimicrob Agents Chemother. 1998;  42 (5) 1105-1109
  • 71 Baddley J W, Patel M, Bhavnani S M, Moser S A, Andes D R. Association of fluconazole pharmacodynamics with mortality in patients with candidemia.  Antimicrob Agents Chemother. 2008;  52 (9) 3022-3028
  • 72 Rodríguez-Tudela J L, Almirante B, Rodríguez-Pardo D et al.. Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia.  Antimicrob Agents Chemother. 2007;  51 (10) 3599-3604
  • 73 Pai M P, Turpin R S, Garey K W. Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia.  Antimicrob Agents Chemother. 2007;  51 (1) 35-39
  • 74 Pfaller M A, Diekema D J, Rex J H et al.. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints.  J Clin Microbiol. 2006;  44 (3) 819-826
  • 75 Mavridou E, Brüggemann R J, Melchers W J, Mouton J W, Verweij P E. Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene.  Antimicrob Agents Chemother. 2010;  54 (2) 860-865
  • 76 Howard S J, Lestner J M, Sharp A et al.. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy.  J Infect Dis. 2011;  203 (9) 1324-1332
  • 77 Mavridou E, Bruggemann R J, Melchers W J, Verweij P E, Mouton J W. Impact of cyp51A mutations on the pharmacokinetic and pharmacodynamic properties of voriconazole in a murine model of disseminated aspergillosis.  Antimicrob Agents Chemother. 2010;  54 (11) 4758-4764
  • 78 Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications.  Antimicrob Agents Chemother. 2009;  53 (1) 24-34
  • 79 Ernst E J, Klepser M E, Ernst M E, Messer S A, Pfaller M A. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods.  Diagn Microbiol Infect Dis. 1999;  33 (2) 75-80
  • 80 Ernst E J, Roling E E, Petzold C R, Keele D J, Klepser M E. In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies.  Antimicrob Agents Chemother. 2002;  46 (12) 3846-3853
  • 81 Andes D, Diekema D J, Pfaller M A et al.. In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model.  Antimicrob Agents Chemother. 2008;  52 (2) 539-550
  • 82 Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R. In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model.  Antimicrob Agents Chemother. 2003;  47 (4) 1187-1192
  • 83 Andes D, Safdar N. Efficacy of micafungin for the treatment of candidemia.  Eur J Clin Microbiol Infect Dis. 2005;  24 (10) 662-664
  • 84 Andes D R, Diekema D J, Pfaller M A, Marchillo K, Bohrmueller J. In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model.  Antimicrob Agents Chemother. 2008;  52 (10) 3497-3503
  • 85 Gumbo T, Drusano G L, Liu W et al.. Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis in mice with persistent neutropenia.  Antimicrob Agents Chemother. 2007;  51 (3) 968-974
  • 86 Gumbo T, Drusano G L, Liu W et al.. Anidulafungin pharmacokinetics and microbial response in neutropenic mice with disseminated candidiasis.  Antimicrob Agents Chemother. 2006;  50 (11) 3695-3700
  • 87 Groll A H, Mickiene D, Petraitis V et al.. Compartmental pharmacokinetics and tissue distribution of the antifungal echinocandin lipopeptide micafungin (FK463) in rabbits.  Antimicrob Agents Chemother. 2001;  45 (12) 3322-3327
  • 88 Hope W W, Mickiene D, Petraitis V et al.. The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates.  J Infect Dis. 2008;  197 (1) 163-171
  • 89 Clancy C J, Huang H, Cheng S, Derendorf H, Nguyen M H. Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments.  Antimicrob Agents Chemother. 2006;  50 (7) 2569-2572
  • 90 Walsh T J, Lee J W, Kelly P et al.. Antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3-beta-glucan synthetase inhibitor, during continuous and intermittent intravenous infusions in treatment of experimental disseminated candidiasis.  Antimicrob Agents Chemother. 1991;  35 (7) 1321-1328
  • 91 Kurtz M B, Heath I B, Marrinan J, Dreikorn S, Onishi J, Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase.  Antimicrob Agents Chemother. 1994;  38 (7) 1480-1489
  • 92 Wiederhold N P, Kontoyiannis D P, Chi J, Prince R A, Tam V H, Lewis R E. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity.  J Infect Dis. 2004;  190 (8) 1464-1471
  • 93 Lewis R E, Albert N D, Kontoyiannis D P. Comparison of the dose-dependent activity and paradoxical effect of caspofungin and micafungin in a neutropenic murine model of invasive pulmonary aspergillosis.  J Antimicrob Chemother. 2008;  61 (5) 1140-1144
  • 94 Lewis R E, Leventakos K, Liao G, Kontoyiannis D P. Efficacy of caspofungin in neutropenic and corticosteroid-immunosuppressed murine models of invasive pulmonary mucormycosis.  Antimicrob Agents Chemother. 2011;  55 (7) 3584-3587
  • 95 Lewis R E, Liao G, Hou J, Prince R A, Kontoyiannis D P. Comparative in vivo dose-dependent activity of caspofungin and anidulafungin against echinocandin-susceptible and -resistant Aspergillus fumigatus.  J Antimicrob Chemother. 2011;  66 (6) 1324-1331
  • 96 Perfect J R, Dismukes W E, Dromer F et al.. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america.  Clin Infect Dis. 2010;  50 (3) 291-322
  • 97 Lewis R E, Prince R A, Chi J, Kontoyiannis D P. Itraconazole preexposure attenuates the efficacy of subsequent amphotericin B therapy in a murine model of acute invasive pulmonary aspergillosis.  Antimicrob Agents Chemother. 2002;  46 (10) 3208-3214
  • 98 Meletiadis J, Petraitis V, Petraitiene R et al.. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in vitro and in vivo correlation.  J Infect Dis. 2006;  194 (7) 1008-1018
  • 99 Clemons K V, Espiritu M, Parmar R, Stevens D A. Comparative efficacies of conventional amphotericin b, liposomal amphotericin B (AmBisome), caspofungin, micafungin, and voriconazole alone and in combination against experimental murine central nervous system aspergillosis.  Antimicrob Agents Chemother. 2005;  49 (12) 4867-4875
  • 100 Petraitis V, Petraitiene R, Hope W W et al.. Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and in vivo correlations of the concentration- and dose- dependent interactions between anidulafungin and voriconazole by Bliss independence drug interaction analysis.  Antimicrob Agents Chemother. 2009;  53 (6) 2382-2391
  • 101 Petraitis V, Petraitiene R, Sarafandi A A et al.. Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin.  J Infect Dis. 2003;  187 (12) 1834-1843
  • 102 Meletiadis J, Stergiopoulou T, O’Shaughnessy E M, Peter J, Walsh T J. Concentration-dependent synergy and antagonism within a triple antifungal drug combination against Aspergillus species: analysis by a new response surface model.  Antimicrob Agents Chemother. 2007;  51 (6) 2053-2064
  • 103 Kirkpatrick W R, Perea S, Coco B J, Patterson T F. Efficacy of caspofungin alone and in combination with voriconazole in a Guinea pig model of invasive aspergillosis.  Antimicrob Agents Chemother. 2002;  46 (8) 2564-2568
  • 104 Luque J C, Clemons K V, Stevens D A. Efficacy of micafungin alone or in combination against systemic murine aspergillosis.  Antimicrob Agents Chemother. 2003;  47 (4) 1452-1455
  • 105 MacCallum D M, Whyte J A, Odds F C. Efficacy of caspofungin and voriconazole combinations in experimental aspergillosis.  Antimicrob Agents Chemother. 2005;  49 (9) 3697-3701
  • 106 Demchok J P, Meletiadis J, Roilides E, Walsh T J. Comparative pharmacodynamic interaction analysis of triple combinations of caspofungin and voriconazole or ravuconazole with subinhibitory concentrations of amphotericin B against Aspergillus spp.  Mycoses. 2010;  53 (3) 239-245
  • 107 O’Shaughnessy E M, Meletiadis J, Stergiopoulou T, Demchok J P, Walsh T J. Antifungal interactions within the triple combination of amphotericin B, caspofungin and voriconazole against Aspergillus species.  J Antimicrob Chemother. 2006;  58 (6) 1168-1176
  • 108 Nivoix Y, Zamfir A, Lutun P et al.. Combination of caspofungin and an azole or an amphotericin B formulation in invasive fungal infections.  J Infect. 2006;  52 (1) 67-74
  • 109 Singh N, Limaye A P, Forrest G et al.. Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study.  Transplantation. 2006;  81 (3) 320-326
  • 110 Marr K A, Boeckh M, Carter R A, Kim H W, Corey L. Combination antifungal therapy for invasive aspergillosis.  Clin Infect Dis. 2004;  39 (6) 797-802
  • 111 Denning D W, Marr K A, Lau W M et al.. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis.  J Infect. 2006;  53 (5) 337-349
  • 112 Kontoyiannis D P, Ratanatharathorn V, Young J A et al.. Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic stem cell transplant recipients with invasive aspergillosis.  Transpl Infect Dis. 2009;  11 (1) 89-93
  • 113 Thomas A, Korb V, Guillemain R et al.. Clinical outcomes of lung-transplant recipients treated by voriconazole and caspofungin combination in aspergillosis.  J Clin Pharm Ther. 2010;  35 (1) 49-53
  • 114 Maertens J, Glasmacher A, Herbrecht R Caspofungin Combination Therapy Study Group et al. Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis.  Cancer. 2006;  107 (12) 2888-2897
  • 115 ClinicalTrials.gov .A prospective, randomized trial comparing the efficacy of anidulafungin and voriconazole in combination to that of voriconazole alone when used for primary therapy of proven or probable invasive aspergillosis. 2010. Available at: http://clinicaltrials.gov/C+2/show/NCT0053147 Accessed December 22, 2010

David R. AndesM.D. 

Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, MFCB, Rm. 5211

1685 Highland Ave., Madison, WI 53705-2281

Email: dra@medicine.wisc.edu

    >