References and Notes
<A NAME="RD80911ST-1">1</A>
Tour JM.
Acc.
Chem. Res.
2000,
33:
791
<A NAME="RD80911ST-2">2</A>
Pugh VJ.
Hu Q.-S.
Zuo X.
Lewis FD.
Pu L.
J.
Org. Chem.
2001,
66:
6136
<A NAME="RD80911ST-3">3</A>
Hill DJ.
Mio MJ.
Prince RB.
Hughes TS.
Moore JS.
Chem. Rev.
2001,
101:
3893
<A NAME="RD80911ST-4">4</A>
Bunz UHF.
Chem. Rev.
2000,
100:
1605
<A NAME="RD80911ST-5">5</A>
Jenny NM.
Mayor M.
Eaton TR.
Eur.
J. Org. Chem.
2011,
4965
<A NAME="RD80911ST-6">6</A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron
Lett.
1975,
16:
4467
Selected reviews:
<A NAME="RD80911ST-7A">7a</A>
Rossi R.
Carpita A.
Bellina F.
Org. Prep.
Proced. Int.
1995,
27:
127
<A NAME="RD80911ST-7B">7b</A>
Sonogashira K. In Metal-Catalyzed Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
New
York:
1998.
p.203-229
<A NAME="RD80911ST-7C">7c</A>
Sonogashira K.
J.
Organomet. Chem.
2002,
653:
46
<A NAME="RD80911ST-7D">7d</A>
Negishi E.
Anastasia L.
Chem. Rev.
2003,
103:
1979
<A NAME="RD80911ST-7E">7e</A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442
<A NAME="RD80911ST-7F">7f</A>
Yin L.
Liebscher J.
Chem. Rev.
2007,
107:
874
<A NAME="RD80911ST-7G">7g</A>
Chinchilla R.
Nájera C.
Chem. Rev.
2007,
107:
874
<A NAME="RD80911ST-7H">7h</A>
Doucet H.
Hierso J.-C.
Angew. Chem. Int. Ed.
2007,
46:
834
<A NAME="RD80911ST-7I">7i</A>
Plenio H.
Angew.
Chem. Int. Ed.
2008,
47:
6954
<A NAME="RD80911ST-7J">7j</A>
McGlacken GP.
Fairlamb IJS.
Eur.
J. Org. Chem.
2009,
4011
<A NAME="RD80911ST-7K">7k</A>
Pal M.
Synlett
2009,
2896
<A NAME="RD80911ST-8A">8a</A>
Cassar L.
J. Organomet. Chem.
1975,
93:
253
<A NAME="RD80911ST-8B">8b</A>
Dieck HA.
Heck FR.
J.
Organomet. Chem.
1975,
93:
259
For recent examples of Cassar-Heck
alkynylation reactions, see:
<A NAME="RD80911ST-9A">9a</A>
Kawanami H.
Matsushima K.
Sato M.
Ikushima Y.
Angew. Chem. Int. Ed.
2007,
46:
5129
<A NAME="RD80911ST-9B">9b</A>
Shi S.
Zhang Y.
Synlett
2007,
1843
<A NAME="RD80911ST-9C">9c</A>
Ljungdahl T.
Bennur T.
Dallas A.
Emtenaes H.
Maartensson J.
Organometallics
2008,
27:
2490
<A NAME="RD80911ST-9D">9d</A>
Komáromi A.
Tolnai GL.
Novák Z.
Tetrahedron Lett.
2008,
49:
7294
<A NAME="RD80911ST-9E">9e</A>
Lipshutz BH.
Chung DW.
Rich B.
Org. Lett.
2008,
10:
3793
<A NAME="RD80911ST-9F">9f</A>
Carpita A.
Ribecai A.
Tetrahedron Lett.
2009,
50:
204
<A NAME="RD80911ST-9G">9g</A>
Bakherad M.
Amin AH.
Keinvanloo A.
Bahramian B.
Raeissi M.
Tetrahedron
Lett.
2010,
51:
5653
<A NAME="RD80911ST-9H">9h</A>
Saha D.
Dey R.
Ranu BC.
Eur.
J. Org. Chem.
2010,
6067
<A NAME="RD80911ST-9I">9i</A>
de Carné-Carnavalet B.
Archambeau A.
Meyer C.
Cossy J.
Folléas B.
Brayer J.-L.
Demoute J.-P.
Org. Lett.
2011,
13:
956
<A NAME="RD80911ST-9J">9j</A>
Prabakaran K.
Khan FN.
Jin JS.
Tetrahedron
Lett.
2011,
52:
2566
<A NAME="RD80911ST-10A">10a</A>
Mori A.
Kawashima J.
Shimada T.
Suguro M.
Hirabayshi K.
Nishihara Y.
Org.
Lett.
2000,
2:
2935
<A NAME="RD80911ST-10B">10b</A>
Kobayashi K.
Sugie A.
Takahashi M.
Masui K.
Mori A.
Org.
Lett.
2005,
7:
5083
<A NAME="RD80911ST-11A">11a</A>
Crisp GT.
Turner PD.
Stephens KA.
J.
Organomet. Chem.
1998,
570:
219
<A NAME="RD80911ST-11B">11b</A>
Eberhard MR.
Wang Z.
Jensen CM.
Chem. Commun.
2002,
818
<A NAME="RD80911ST-12A">12a</A>
Herrmann WA.
Böhm VPW.
Reisinger CP.
J.
Organomet. Chem.
1998,
576:
23
<A NAME="RD80911ST-12B">12b</A>
Alonso DA.
Nájera C.
Pacheco MC.
Org. Lett.
2000,
2:
1283
<A NAME="RD80911ST-12C">12c</A>
Alonso DA.
Nájera C.
Pacheco MC.
Tetrahedron Lett.
2002,
43:
9365
<A NAME="RD80911ST-12D">12d</A>
Alonso DA.
Nájera C.
Pacheco MC.
Adv. Synth. Catal.
2003,
345:
1146
<A NAME="RD80911ST-12E">12e</A>
Alacid E.
Alonso DA.
Botella L.
Nájera C.
Pacheco MC.
Chem. Rec.
2006,
6:
117
Selected papers on Sonogashira
coupling reactions in ionic liquids:
<A NAME="RD80911ST-13A">13a</A>
Deshmukh RR.
Rajagopal R.
Srinivasan KV.
Chem. Commun.
2001,
1544
<A NAME="RD80911ST-13B">13b</A>
Fukuyama T.
Shinmen M.
Nishitani S.
Sato M.
Ryu I.
Org.
Lett.
2002,
4:
1691
<A NAME="RD80911ST-13C">13c</A>
Park SB.
Alper H.
Chem. Commun.
2004,
1306
<A NAME="RD80911ST-13D">13d</A>
Gholap AR.
Venkatesan K.
Pasricha R.
Daniel T.
Lahoti RJ.
Srinivasan KV.
J.
Org. Chem.
2005,
70:
4869
<A NAME="RD80911ST-13E">13e</A>
Rahman MT.
Fukuyama T.
Ryu I.
Suzuki K.
Yinoemura K.
Hughes PF.
Nokihara K.
Tetrahedron
Lett.
2006,
47:
2703
<A NAME="RD80911ST-13F">13f</A>
Hierso J.-C.
Boudon J.
Picquet M.
Meunier P.
Eur. J. Org. Chem.
2007,
583
<A NAME="RD80911ST-13G">13g</A>
de Lima PG.
Antunes OAC.
Tetrahedron
Lett.
2008,
49:
2506
<A NAME="RD80911ST-13H">13h</A>
Fukuyama T.
Rahman MdT.
Maetani S.
Ryu I.
Chem. Lett.
2011,
40:
1027
<A NAME="RD80911ST-14A">14a</A>
Kabalka GW.
Wang L.
Namboodiri V.
Pagni RM.
Tetrahedron
Lett.
2000,
41:
5151
<A NAME="RD80911ST-14B">14b</A>
Erdélyi M.
Gogoll A.
J. Org. Chem.
2001,
66:
4165
<A NAME="RD80911ST-15A">15a</A>
Hay AS.
J. Org. Chem.
1960,
25:
1275
<A NAME="RD80911ST-15B">15b</A>
Hay AS.
J. Org. Chem.
1962,
27:
3320
<A NAME="RD80911ST-15C">15c</A>
Siemsen P.
Livingston RC.
Diederich F.
Angew.
Chem. Int. Ed.
2000,
39:
2632
<A NAME="RD80911ST-16A">16a</A>
Rossi R.
Carpita A.
Lezzi A.
Tetrahedron
1984,
40:
2773
<A NAME="RD80911ST-16B">16b</A>
Shultz D.
Gwaltney KP.
Lee H.
J.
Org. Chem.
1998,
63:
4034
<A NAME="RD80911ST-16C">16c</A>
Pak JJ.
Weakley TJR.
Haley MM.
J. Am. Chem. Soc.
1999,
121:
8182
<A NAME="RD80911ST-16D">16d</A>
Nishihara Y.
Ikegashira K.
Hirabayashi K.
Ando J.-I.
Mori A.
Hiyama T.
J. Org. Chem.
2000,
65:
1780
<A NAME="RD80911ST-16E">16e</A>
Yang C.
Nolan SP.
Organometallics
2002,
21:
1020
<A NAME="RD80911ST-16F">16f</A>
Mio MJ.
Kopel LC.
Braun JB.
Gadzikwa TL.
Hull KL.
Brisbois RG.
Markworth CJ.
Grieco PA.
Org. Lett.
2002,
4:
3199
<A NAME="RD80911ST-16G">16g</A>
Halbes U.
Pale P.
Tetrahedron Lett.
2002,
43:
2039
<A NAME="RD80911ST-16H">16h</A>
Li G.
Wang X.
Wang F.
Tetrahedron Lett.
2005,
46:
8971
<A NAME="RD80911ST-16I">16i</A>
Sørensen U.
Pombo-Villar E.
Tetrahedron
2005,
61:
2697
<A NAME="RD80911ST-16J">16j</A>
Gil-Moltó J.
Nájera C.
Adv.
Synth. Catal.
2006,
348:
1874
<A NAME="RD80911ST-16K">16k</A>
Sommer WJ.
Weck M.
Adv. Synth.
Catal.
2006,
348:
2101
<A NAME="RD80911ST-16L">16l</A>
Nishihara Y.
Inoue E.
Okada Y.
Takagi K.
Synlett
2008,
3041
<A NAME="RD80911ST-16M">16m</A>
Nishihara Y.
Inoue E.
Ogawa D.
Okada Y.
Noyori S.
Takagi K.
Tetrahedron Lett.
2009,
50:
4643
<A NAME="RD80911ST-16N">16n</A>
Severin R.
Reimer J.
Doye S.
J.
Org. Chem.
2010,
75:
3518
<A NAME="RD80911ST-17">17</A> Recently, a Pd-free, Cu-catalyzed
sila-Sonogashira cross-coupling protocol involving aryl iodides
was published:
Nishihara Y.
Noyori S.
Okamoto T.
Suetsugu M.
Iwasaki M.
Chem. Lett.
2011,
40:
972
For a discussion on phase-transfer
catalysis in cross-coupling reactions, see:
<A NAME="RD80911ST-18A">18a</A>
Dehmlow EW. In Aqueous-Phase Organometallic
Catalysis
2nd ed.:
Cornils B.
Herrmann WA.
Wiley-VCH;
Weinheim:
2004.
p.272
<A NAME="RD80911ST-18B">18b</A>
Mąkosza M.
Fedoryński M.
ARKIVOC
2006,
(iv):
7
<A NAME="RD80911ST-19">19</A>
Hundertmart T.
Littke AF.
Buchwald SL.
Fu GC.
Org.
Lett.
2000,
2:
1729
<A NAME="RD80911ST-20">20</A> See, for example:
Wuts PGM.
Greene TW. In Greene"s Protective Groups in Organic
Synthesis
4th ed.:
John Wiley and Sons;
Hoboken:
2007.
p.928-929
<A NAME="RD80911ST-21">21</A> For an example of protiodesilylation
of alkynyltrimethylsilanes with NaOH under PTC conditions, see:
Roser J.
Eberbach W.
Synth.
Commun.
1986,
16:
983
<A NAME="RD80911ST-22">22</A>
General Procedure
for the Synthesis of Di(hetero)arylethynes 3
To a
mixture of alkynyltrimethylsilane 1 (1
mmol), (hetero)aryl bromide 2 (1.1 mmol),
PdCl2(PhCN)2 (19.8 mg, 0.05 mmol), t-Bu3PHBF4 (29.0
mg, 0.1 mmol), CuI (19.0 mg, 0.1 mmol), and Bn(n-Bu)3NCl
(62.4 mg, 0.2 mmol) in toluene (8 mL) was added a 2.5 M aq solution
of NaOH (10 mmol, 4 mL), and the resulting biphasic mixture was
stirred under argon at 40 ˚C for the period of
time reported in Table
[²]
.
The degree of completion of the reaction and the composition of
the reaction mixture were established by GC and GC-MS analyses
of a sample of the crude reaction mixture after it had been treated
with a sat. aq NH4Cl solution and extracted with EtOAc.
After being cooled to r.t., the reaction mixture was diluted with
EtOAc (15 mL) and poured into a sat. aq NH4Cl solution
(15 mL), and the resulting mixture was stirred in the open air for
0.5 h and then extracted with EtOAc (4 × 10
mL). The organic extracts were washed with H2O (2 × 5
mL), dried and concentrated under reduced pressure, and the residue
was purified by flash cromatography on silica gel. This procedure
was employed to prepare di(hetero)arylethynes 3a-e,g-m (Table
[²]
,
entries 1-5 and 7-10,). The same procedure, but
employing BTSE (0.23 mL, 0.17 g, 1.0 mmol) and aryl bromide 2 (2.2 mmol), was also applied to the synthesis
of symmetrically substituted diarylethynes 4a-c (Scheme
[³]
).
<A NAME="RD80911ST-23">23</A>
Representative
Data for New Compounds
4-(Thiophen-2-ylethynyl)benzaldehyde
(3g)
Mp 110-112 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.03 (dd, J = 3.7, 5.0
Hz, 1 H), 7.34 (m, 2 H), 7.63 (d, J = 9.0
Hz, 2 H), 7.84 (d, J = 9.0
Hz, 2 H), 9.99 (s, 1 H). ¹³C NMR (75
MHz, CDCl3): δ = 86.87, 92.37, 122.43,
127.40, 128.43, 129.20, 129.62 (2 C), 131.79 (2 C), 132.93, 135.40,
191.39. MS: m/z (%) = 212
(100) [M+], 211 (60), 183
(13), 139 (35), 91 (6). Anal. Calcd for C13H8OS
(212.27): C, 73.56; H, 3.80. Found: C, 73.84; H, 3.78.
3-[(3,4-Dimethoxyphenyl)ethynyl]pyridine
(3l)
Mp 53-55 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 3.89 (m,
6 H), 6.83 (d, J = 9
Hz, 1 H), 7.05 (s, 1 H), 7.16 (d, J = 6
Hz, 1 H), 7.25 (m, 1 H), 7.77 (d, J = 9
Hz, 1 H), 8.55 (s, 1 H), 8.79 (s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 55.67, 55.70, 84.48,
92.75, 110.83, 113.99, 114.40, 120.57, 122.91, 124.94, 137.98, 148.06,
148.46, 149.67, 151.85. MS: m/z (%) = 239
(100) [M+], 224 (18), 196
(16), 167 (27), 1543 (12), 127 (12). Anal. Calcd for C15H13NO2 (239.27):
C, 75.30; H, 5.48. Found: C, 75.61; H, 5.52.
<A NAME="RD80911ST-24">24</A> Recently, a classical Sonogashira
cross-coupling protocol for the synthesis of compounds 3 was published:
Moulton BE.
Whitwood AC.
Duhme-Klair AK.
Lynam JM.
Fairlamb IJS.
J. Org.
Chem.
2011,
76:
5320