Synlett 2012; 23(15): 2247-2250
DOI: 10.1055/s-0031-1290451
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Cyanation of Arylboronic Acids Using DDQ as Cyanide Source

Guangyou Zhang
a   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. of China, Email: fanchen@wzu.edu.cn
,
Shuyou Chen
a   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. of China, Email: fanchen@wzu.edu.cn
,
Haiyang Fei
b   School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China, Fax: +86(577)56998939   Email: jiangcheng@cczu.edu.cn
,
Jiang Cheng*
b   School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China, Fax: +86(577)56998939   Email: jiangcheng@cczu.edu.cn
,
Fan Chen*
a   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. of China, Email: fanchen@wzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 18 May 2012

Accepted after revision: 23 June 2012

Publication Date:
08 August 2012 (online)


Abstract

In this paper, a copper-catalyzed cyanation of arylboronic acids is achieved with DDQ, providing nitriles with good yields. This new approach represents a safe method for the synthesis of aryl nitriles.

Supporting Information

 
  • References and Notes

    • 1a Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances: Syntheses, Patents, Applications . 4th ed.. Thieme; Stuttgart: 2001
    • 1b Nagamura S, Kobayashi E, Gomi K, Saito H. Bioorg. Med. Chem. 1996; 4: 1379
    • 1c Njar VC. O, Brodie AM. H. Drugs 1999; 58: 233
    • 2a Rappoport Z. The Chemistry of the Cyano Group . Interscience; New York: 1970
    • 2b Larock RC. Comprehensive Organic Transformations . Wiley-VCH; New York: 1988
    • 3a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 3b Hodgson HH. Chem. Rev. 1947; 40: 251
    • 3c Ellis GP, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
    • 3d Lindley J. Tetrahedron 1984; 40: 1433
    • 4a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 4b Yeung PY, So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2010; 49: 8918
    • 4c Chen J, Sun Y, Liu B, Liu D, Cheng J. Chem. Commun. 2012; 48: 449
    • 4d Zhang D, Sun H, Zhang L, Zhou Y, Li C, Jiang H, Chen K, Liu H. Chem. Commun. 2012; 48: 2909
    • 4e Yeung PY, Tsang CP, Kwong FY. Tetrahedron Lett. 2011; 52: 7038
    • 4f Zhou W, Chen W, Wang L. Org. Biomol. Chem. 2012; 10: 4172
    • 5a Do H.-Q, Daugulis O. Org. Lett. 2010; 12: 2517
    • 5b Qin C, Jiao N. J. Am. Chem. Soc. 2010; 132: 15893
    • 5c Mariampillai B, Alliot J, Li M, Lautens M. J. Am. Chem. Soc. 2007; 129: 15372
    • 5d Yan G, Kuang C, Zhang Y, Wang J. Org. Lett. 2010; 12: 1052
    • 5e Lu Z, Hu C, Guo J, Li J, Cui Y, Jia Y. Org. Lett. 2010; 12: 480
    • 5f Zhou W, Xu J, Zhang L, Jiao N. Org. Lett. 2010; 12: 2888
    • 5g Zhang G, Lv G, Pan C, Cheng J, Chen F. Synlett 2011; 2991
    • 5h Subba Reddy B, Begum VZ, Jayasudhan Reddy YJ. Tetrahedron Lett. 2010; 51: 3334
    • 5i Mariampillai B, Alberico D, Bidau V, Lautens M. J. Am. Chem. Soc. 2006; 128: 14436
    • 5j Dohi T, Morimoto K, Kiyono Y, Tohma H, Kita Y. Org. Lett. 2005; 7: 537
    • 5k Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 5l Okamoto K, Watanabe M, Murai M, Hatano R, Ohe K. Chem. Commun. 2012; 48: 3127
    • 5m Jia X, Yang D, Wang W, Luo F, Cheng J. J. Org. Chem. 2009; 74: 9470
    • 5n Jia X, Yang D, Zhang S, Cheng J. Org. Lett. 2009; 11: 4716
    • 5o Zhang Y, Peng H, Zhan M, Cheng Y, Zhu C. Chem. Commun. 2011; 47: 2354
    • 5p Ushijima S, Moriyama K, Togo H. Tetrahedron 2012; 68: 4588
  • 6 Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 7a Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
    • 7b Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
    • 8a Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
    • 8b Ushijima S, Togo H. Synlett 2010; 1562
    • 8c Ishii G, Moriyama K, Togo H. Tetrahedron Lett. 2011; 52: 2404
    • 8d Ushijima S, Moriyama K, Togo H. Tetrahedron 2011; 67: 958
    • 9a Sundermeier M, Zapf A, Beller M. Angew. Chem. Int. Ed. 2003; 42: 1661
    • 9b Schareina T, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777
    • 9c Park EJ, Lee S, Chang S. J. Org. Chem. 2010; 75: 2760
    • 10a Anbarasan P, Neumann H, Beller M. Chem.–Eur. J. 2011; 17: 4217
    • 10b Yang Y, Zhang Y, Wang J. Org. Lett. 2011; 13: 5608
    • 11a Thiele J, Günther F. Justus Liebigs Ann. Chem. 1906; 349: 45
    • 11b Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
  • 12 Zhang Z, Liebeskind LS. Org. Lett. 2006; 8: 4331
  • 13 Liskey CW, Liao X, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
  • 14 Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
  • 15 Zhang G, Zhang L, Hu M, Cheng J. Adv. Synth. Catal. 2011; 353: 291
  • 16 Kim J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
  • 17 General Procedure of Cyanation Protocol of Arylboronic Acids with DDQ Under air, a reaction tube was charged with arylboronic acids (0.2 mmol), DDQ (45.2 mg, 0.2 mmol), Cu(OTf)2 (7.2 mg, 10 mol%), K2CO3 (41.4 mg, 0.3 mmol), Ag2CO3 (55 mg, 0.2 mmol), and dry DMF (2 mL). The mixture was stirred at 100 °C for 20 h. After the completion of the reaction, monitored by TLC, the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the product. 4-(Methylthio)benzonitrile (3ac) Yellowlish solid; mp 61–62 °C. 1H NMR (300 MHz, CDCl3): δ = 7.53 (d, J = 8.7 Hz, 2 H), 7.26 (d, J = 8.7 Hz, 2 H), 2.51 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 146.1, 132.2, 125.6, 119.0, 107.7, 14.7. IR (neat): ν = 2223, 1699, 1593, 1483, 1434, 1361, 1218, 1089, 816 cm–1. HRMS (EI): m/z calcd for C8H7NS [M+]: 149.0299; found: 149.0291. Methyl 4-Cyanobenzoate (3al) Yellowlish solid; mp 67–68 °C. 1H NMR (300 MHz, CDCl3): δ = 8.12 (d, J = 8.1 Hz, 2 H), 7.73 (d, J = 8.1 Hz, 2 H), 3.95 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 165.4, 133.9, 132.2, 130.0, 117.9, 116.4, 52.6. IR (neat): ν = 2221, 1699, 1582, 1424, 1358, 1210, 1089 cm–1. HRMS (EI): m/z calcd for C9H7NO2 [M+]: 161.0477; found: 161.0486.