Abstract
The solid, air-stable peptide coupling reagent TFFH (tetramethylfluoroformamidinium
hexafluorophosphate) was found to activate a variety of alcohols
towards deoxofluorination. These conditions are compatible with
carbonyl functional groups thus offering interesting possibilities
for the application to sensitive molecules.
Key words
deoxofluorination - fluoroformamidinium - fluoride - TFFH - fluorination
References and Notes
For selected reviews on various
fluorination methods and the impact of C-F bonds in various
fields, see:
<A NAME="RS08411ST-1A">1a </A>
Kirk KL.
Org. Process Res. Dev.
2008,
12:
305
<A NAME="RS08411ST-1B">1b </A>
Purser S.
Moore PR.
Swallow S.
Gouverneur V.
Chem. Soc. Rev.
2008,
37:
320
<A NAME="RS08411ST-1C">1c </A>
Landelle G.
Bergeron M.
Turcotte-Savard M.-O.
Paquin J.-F.
Chem. Soc. Rev.
2011,
40:
2867
<A NAME="RS08411ST-1D">1d </A>
Ma J.-A.
Cahard D.
Chem. Rev.
2008,
108:
PR1
<A NAME="RS08411ST-1E">1e </A>
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
104:
6119
<A NAME="RS08411ST-1F">1f </A>
Grushin VV.
Tomashenko OA.
Chem.
Rev.
2011,
111:
4475
<A NAME="RS08411ST-1G">1g </A>
Nie J.
Guo H.-C.
Cahard D.
Ma J.-A.
Chem. Rev.
2011,
111:
455
<A NAME="RS08411ST-1H">1h </A>
Cartwright D. In Organofluorine Chemistry
Banks RE.
Smart BE.
Tatlow JC.
Plenum;
New
York:
1994.
<A NAME="RS08411ST-1I">1i </A>
Kirsh P. In Modern Fluoroorganic Chemistry
Wiley-VCH;
Weinheim:
2004.
<A NAME="RS08411ST-1J">1j </A>
Müller K.
Faeh C.
Diederich F.
Science
2007,
317:
1881
<A NAME="RS08411ST-1K">1k </A>
Hagmann WK.
J. Med. Chem.
2008,
51:
4359
<A NAME="RS08411ST-1L">1l </A>
Bégué J.-P.
Bonnet-Delphon D.
J.
Fluorine Chem.
2006,
127:
992
<A NAME="RS08411ST-1M">1m </A>
Kirk KL.
J. Fluorine Chem.
2006,
127:
1013
<A NAME="RS08411ST-1N">1n </A>
Hiyama T. In Organofluorine Compounds: Chemistry and Applications
Yamamoto H.
Springer-Verlag;
Berlin:
2000.
<A NAME="RS08411ST-2A">2a </A>
Umemoto T.
Singh RP.
Xu Y.
Saito N.
J.
Am. Chem. Soc.
2010,
132:
18199
<A NAME="RS08411ST-2B">2b </A>
Tang P.
Wang W.
Ritter T.
J.
Am. Chem. Soc.
2011,
133:
11482
<A NAME="RS08411ST-2C">2c </A>
Ni C.
Hu J.
Synlett
2011,
770
<A NAME="RS08411ST-2D">2d </A>
Yin J.
Zarkowsky DS.
Thomas DW.
Zhao MM.
Huffman MA.
Org. Lett.
2004,
6:
1465 ; and references cited therein
DAST:
<A NAME="RS08411ST-3A">3a </A>
Middleton WJ.
J. Org. Chem.
1975,
40:
574
<A NAME="RS08411ST-3B">3b </A>
Hudlicky M.
Org.
React. (N. Y.)
1988,
35:
513
Deoxo-Fluor:
<A NAME="RS08411ST-3C">3c </A>
Lal GS.
Pez GP.
Pesaresi RJ.
Prozonic FM.
Chem.
Commun.
1999,
215
<A NAME="RS08411ST-3D">3d </A>
Lal GS.
Pez GP.
Pesaresi RJ.
Prozonic FM.
Cheng H.
J. Org. Chem.
1999,
64:
7048
<A NAME="RS08411ST-3E">3e </A> For a review on these reagents and
their applications, see:
Singh RP.
Shreeve JM.
Synthesis
2002,
2561
For selected examples, see:
<A NAME="RS08411ST-4A">4a </A>
Weiberth FJ.
Gill HS.
Jiang Y.
Lee GE.
Lienard P.
Pemberton C.
Powers MR.
Subotkowski W.
Tomasik W.
Vanasse BJ.
Yu Y.
Org. Process Res. Dev.
2010,
14:
623
<A NAME="RS08411ST-4B">4b </A>
Rossi F.
Corcella F.
Saverio Caldarelli F.
Heidempergher F.
Marchionni C.
Auguadro M.
Cattaneo M.
Ceriani L.
Visentin G.
Ventrella G.
Pinciroli V.
Ramella G.
Candiani I.
Bedeschi A.
Tomasi A.
Kline BJ.
Martinez CA.
Yazbec D.
Kucera DJ.
Org. Process Res. Dev.
2008,
12:
322
<A NAME="RS08411ST-4C">4c </A>
Negi DS.
Köppling L.
Lovis K.
Abdallah R.
Geisler J.
Budde U.
Org. Process
Res. Dev.
2008,
12:
345
<A NAME="RS08411ST-4D">4d </A>
Königsberger K.
Chen G.-P.
Vivelo J.
Lee G.
Fitt J.
McKenna J.
Jenson T.
Prasad K.
Repič O.
Org.
Process Res. Dev.
2002,
6:
665
<A NAME="RS08411ST-5A">5a </A>
Cochran J.
Chem. Eng. News
1979,
57
(12):
74
<A NAME="RS08411ST-5B">5b </A>
Middleton WJ.
Chem. Eng. News
1979,
57
(21):
43
<A NAME="RS08411ST-5C">5c </A>
Messina PA.
Mange KC.
Middleton WJ.
J. Fluorine Chem.
1989,
42:
137
<A NAME="RS08411ST-6A">6a </A>
L’Heureux A.
Beaulieu F.
Bennett C.
Bill DR.
Clayton S.
LaFlamme F.
Mirmehrabi M.
Tadayon S.
Tovell D.
Couturier M.
J.
Org. Chem.
2010,
75:
3401
<A NAME="RS08411ST-6B">6b </A>
Beaulieu F.
Beauregard L.-P.
Courchesne G.
Couturier M.
LaFlamme F.
L’Heureux A.
Org. Lett.
2009,
11:
5050
<A NAME="RS08411ST-7">7 </A>
Differential scanning calorimetry (DSC)
analysis of TFFH revealed a generation of 146 J/g at T
max
of
370 ˚C. See reference 6a for comparative data with other
reagents.
<A NAME="RS08411ST-8A">8a </A>
Carpino LA.
El-Faham A.
J.
Am. Chem. Soc.
1995,
117:
4101
<A NAME="RS08411ST-8B">8b </A>
El-Faham A.
Khattab SN.
Synlett
2009,
886
For the use of chloroiminium salts
as dehydrating agents, see:
<A NAME="RS08411ST-9A">9a </A>
Fujisawa T.
Tajima K.
Sato T.
Bull.
Chem. Soc. Jpn.
1983,
56:
3529
<A NAME="RS08411ST-9B">9b </A>
Isobe T.
Ishikawa T.
J. Org. Chem.
1999,
64:
6984
<A NAME="RS08411ST-9C">9c </A>
Fujisawa T.
Mori T.
Fukumoto K.
Sato T.
Chem. Lett.
1982,
11:
1891
Et3 N-3HF is
a commercially available liquid that can be handled in borosilicate
glassware up to 150 ˚C without etching. See:
<A NAME="RS08411ST-10A">10a </A>
Haufe G.
J.
Prakt. Chem.
1996,
338:
99
<A NAME="RS08411ST-10B">10b </A>
Franz R.
J.
Fluorine Chem.
1980,
15:
423
<A NAME="RS08411ST-10C">10c </A>
McClinton MA.
Aldrichim. Acta
1995,
28:
31
<A NAME="RS08411ST-11">11 </A>
This conclusion can only be applied
to a subset of the reactions studied as this behavior could be substrate dependent.
<A NAME="RS08411ST-12A">12a </A>
Hayashi H.
Sonoda H.
Fukumura K.
Nagata T.
Chem.
Commun.
2002,
1618
<A NAME="RS08411ST-12B">12b </A>
Sonoda H,
Fukumura K,
Takano Y,
Okada K,
Hayashi H,
Takahashi A, and
Nagata T. inventors; Eur.
Patent, EP895991A2.
<A NAME="RS08411ST-13">13 </A>
¹9 F NMR experiments
were collected using a Bruker-Biospin 5 mm BBFO probe on Bruker
AVANCE III NMR spectrometer operating at 400 MHz. Limit of detection evaluated
at 0.1%.
<A NAME="RS08411ST-14">14 </A>
The activity of commercial TFFH was
found to vary among suppliers. Material from TCI and Oakwood consistently provided
reproducible results.
<A NAME="RS08411ST-15">15 </A> Toluene provided slightly better
results but the formation of a gum was deemed undesirable especially
in potential scale up of this reaction
<A NAME="RS08411ST-16">16 </A>
The mildest of the sulfur fluoride
based reagents, XtalFluor, was found to transform carbonyls into gem -difluoro moieties at ambient temperatures.
This reaction in bifunctional substrates could be mitigated by using
cryogenic temperatures (-78 ˚C).
<A NAME="RS08411ST-17">17 </A>
Typical Procedure :
The alcohol (1 equiv) was dissolved in EtOAc (concentration of 0.5
M) at ambient temperature. The solution was cooled to 5 ˚C
and Et3 N×3HF (2 equiv) and Et3 N (2 equiv)
were successfully added in a dropwise manner. After stirring for
5 min, TFFH was added in one portion (1.5 equiv). The solution was
then allowed to stir at the necessary temperature. Upon completion,
the reaction was quenched with sat. NaHCO3 to pH 7 and
diluted with additional EtOAc. Layers were separated and the organic layer
was concentrated to a crude residue. The crude residue could be
purified by flash chromatography or partitioned between MTBE and
H2 O to remove the tetramethylurea by-product.