References and Notes
<A NAME="RD52311ST-1A">1a</A>
1,3-Dipolar
Cycloaddition Chemistry
Vol. 1 and 2:
Padwa A.
Wiley;
New York:
1984.
<A NAME="RD52311ST-1B">1b</A>
Torssell KBG.
Nitrile Oxides, Nitrones, and Nitronates
in Organic Synthesis
VCH;
Weinheim:
1988.
<A NAME="RD52311ST-1C">1c</A>
Werner A.
Buss H.
Ber. Dtsch. Chem. Ges.
1894,
27:
2193
<A NAME="RD52311ST-1D">1d</A>
Minakata S.
Okumura S.
Nagamachi T.
Takeda Y.
Org. Lett.
2011,
13:
2966
<A NAME="RD52311ST-1E">1e</A>
Kim JN.
Chung KH.
Ryu EK.
Heterocycles
1991,
32:
477
<A NAME="RD52311ST-2A">2a</A>
Wityak J.
Sielecki TM.
Pinto DJ.
Emmett G.
Sze JY.
Liu J.
Tobin AE.
Wang S.
Jiang B.
Ma P.
Mousa SA.
Olson RE.
Wexler RR.
J. Med. Chem.
1997,
40:
50
<A NAME="RD52311ST-2B">2b</A>
Groutas WC.
Venkataraman R.
Chong LS.
Yoder JE.
Epp JB.
Stanga MA.
Kim EH.
Bioorg. Med. Chem.
1995,
3:
125
<A NAME="RD52311ST-3">3</A>
Curran DP.
J.
Am. Chem. Soc.
1982,
104:
4024
<A NAME="RD52311ST-4A">4a</A>
McGarvey GJ.
Mathys JA.
Wilson KJ.
J.
Org. Chem.
1996,
61:
5704
<A NAME="RD52311ST-4B">4b</A>
Bartoli G.
Bosco M.
Marcantoni E.
Massaccesi M.
Rinaldi S.
Sambri L.
Eur. J. Org. Chem.
2001,
4679
<A NAME="RD52311ST-4C">4c</A>
Sinha SC.
Barbas CF.
Lerner RA.
Proc. Natl. Acad.
Sci. U.S.A.
1998,
95:
14603
<A NAME="RD52311ST-4D">4d</A>
Paterson I.
Florence GJ.
Gerlach K.
Scott
JP.
Sereinig N.
J. Am. Chem. Soc.
2001,
123:
9535
<A NAME="RD52311ST-4E">4e</A>
Colle S.
Taillefumier C.
Chapleur Y.
Liebl R.
Schmidt A.
Bioorg.
Med. Chem.
1999,
7:
1049
<A NAME="RD52311ST-4F">4f</A>
Muri D.
Lohse-Fraefel N.
Carreira EM.
Angew. Chem. Int. Ed.
2005,
44:
4036
<A NAME="RD52311ST-5A">5a</A>
Poutiainen PK.
Venäläinen TA.
Peräkylä M.
Matilainen JM.
Väisänen S.
Honkakoski P.
Laatikainen R.
Pulkkinen JT.
Bioorg.
Med. Chem.
2010,
18:
3437
<A NAME="RD52311ST-5B">5b</A>
León LG.
Carballo RM.
Vega-Hernández MC.
Miranda PO.
Martín VS.
Padrón JI.
Padrón JM.
ChemMedChem
2008,
3:
1740
<A NAME="RD52311ST-5C">5c</A>
Pulkkinen JT.
Honkakoski P.
Perakyla M.
Berczi I.
Laatikainen R.
J. Med. Chem.
2008,
51:
3562
<A NAME="RD52311ST-6A">6a</A>
Romanski J.
Nowak P.
Jurczak J.
Chapuis C.
Tetrahedron:
Asymmetry
2011,
22:
787
<A NAME="RD52311ST-6B">6b</A>
Curran DP.
Scanga SA.
Fenk CJ.
J. Org. Chem.
1984,
49:
3474
<A NAME="RD52311ST-6C">6c</A>
Casnati G.
Quilico A.
Ricca A.
Finzi PV.
Tetrahedron Lett.
1966,
233
<A NAME="RD52311ST-6D">6d</A>
Bull JA.
Balskus EP.
Horan AJ.
Langner M.
Ley SV.
Chem. Eur. J.
2007,
13:
5515
<A NAME="RD52311ST-7A">7a</A>
Nitta M.
Kobayashi T.
J.
Chem. Soc., Chem. Commun.
1982,
877
<A NAME="RD52311ST-7B">7b</A>
Baraldi PG.
Barco A.
Benetti S.
Manfredini S.
Simoni D.
Synthesis
1987,
276
<A NAME="RD52311ST-7C">7c</A>
Paek S.-M.
Yun H.
Kim N.-J.
Jung J.-W.
Chang D.-J.
Lee S.
Yoo J.
Park H.-J.
Suh Y.-G.
J. Org. Chem.
2009,
74:
554
<A NAME="RD52311ST-8A">8a</A>
Natale NR.
Tetrahedron Lett.
1982,
23:
5009
<A NAME="RD52311ST-8B">8b</A>
Bode JW.
Carreira EM.
Org.
Lett.
2001,
3:
1587
<A NAME="RD52311ST-8C">8c</A>
Bode JW.
Carreira EM.
J.
Am. Chem. Soc.
2001,
123:
3611
<A NAME="RD52311ST-9">9</A>
Jiang D.
Chen Y.
J. Org. Chem.
2008,
73:
9181
<A NAME="RD52311ST-10">10</A>
Curran DP.
J.
Am. Chem. Soc.
1983,
105:
5826
<A NAME="RD52311ST-11">11</A>
Churykau H.
Zinovich VG.
Kulinkovich OG.
Synlett
2004,
1949
<A NAME="RD52311ST-12A">12a</A>
Baraldi PG.
Barco A.
Benetti S.
Pollini GP.
Simoni D.
Synthesis
1987,
857
<A NAME="RD52311ST-12B">12b</A>
Kozikowski AP.
Acc. Chem. Res.
1984,
17:
410
<A NAME="RD52311ST-12C">12c</A>
Ignatovich ZhV.
Chernikhova TV.
Skupskaya RV.
Bondar NF.
Koroleva EV.
Lakhvich FA.
Chem. Heterocycl. Compd.
1999,
248
<A NAME="RD52311ST-13A">13a</A>
Li CJ.
Chan T.-H.
Organic Reactions in Aqueous Media
Wiley;
New
York:
1997.
<A NAME="RD52311ST-13B">13b</A>
Grieco PA.
Organic Synthesis in
Water
Kluwer Academic;
Dordrecht:
1997.
<A NAME="RD52311ST-14A">14a</A>
Heinrichs B.
Delhez P.
Schoebrechts J.
Pirard J.
J.
Catal.
1997,
172:
322
<A NAME="RD52311ST-14B">14b</A>
Lambert S.
Heinrichs B.
Brasseur A.
Rulmont A.
Pirard JP.
Appl.
Catal. A
2004,
270:
201
<A NAME="RD52311ST-14C">14c</A>
Ghauch A.
Tuqan A.
Chemosphere
2008,
73:
751
<A NAME="RD52311ST-14D">14d</A>
Lien HL.
Zhang WX.
J.
Environ. Eng. (Reston, VA,U.S.)
2002,
131:
4
<A NAME="RD52311ST-14E">14e</A>
Lien HL.
Zhang WX.
Chemosphere
2002,
49:
371 ; and references cited therein
<A NAME="RD52311ST-15">15</A>
Typical Procedure
for the Reductive Cleavage of 3,5-Disubstituted 4,5-Dihydroisoxazoles
1
To the mixture of the corresponding 3,5-disubstituted
4,5-dihydroisoxazole (1, 1 mmol) and Al
dust (0.81 g, 30 mmol) in MeOH (5 mL) a solution of CuCl2×2H2O
(1.75 g, 10 mmol) in H2O (5 mL) was added dropwise under
vigorous stirring. After the evolution of hydrogen and full consumption
of the starting material (observed by TLC, approximately after 5-10
min), the mixture was diluted with H2O (30 mL), and the
product was extracted with CHCl3 (2 ×30 mL).
The organic layer was dried over Na2SO4, evaporated
under the reduced pressure, and the residue purified by column chromatography
to give 2.
Analytical
Data for 5-Hydroxy-7-tridecanone (2a)
Yield: 84%;
colorless oil. IR (KBr): νmax = 3410
(OH), 1706 (C=O) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 0.88
(3 H, t, J = 7.5
Hz, CH3), 0.91 (3 H, t, J = 7.5
Hz, CH3), 1.28-1.60 (14 H, m, 7 CH2),
2.43 [2 H, t, J = 7.5
Hz, C(8)H2], 2.48-2.54 [1
H, m, C(6)H], 2.57-2.64 [1 H, m, C(6)H],
3.03 (1 H, br s, OH), 3.99-4.07 [1 H, m, C(5)H] ppm. ¹³C
NMR (75 Hz, CDCl3): δ = 13.8
(CH3), 13.9 (CH3), 22.4, 22.6, 23.5, 27.6, 28.7,
31.5, 36.1 (C-4), 43.6 (C-8), 48.9 (C-6), 67.5 (C-5), 212.6 (C-7)
ppm. Anal. Calcd for C13H26O2:
C, 72.84; H, 12.23. Found: C, 73.00; H, 12.19.
Compounds 1-4 were
also fully characterized by IR, ¹H NMR, ¹³C
NMR spectroscopic and microanalytical data, and data for known compounds
are in agreement with published data.