Abstract
We have demonstrated a facile synthesis of functionalized indocyanine
green (ICG) derivatives. Heteroatom-substituted indolenine was synthesized
via SN Ar reaction of 5-chloro-2,4-dinitroanisole
with 1,2-dimethyl-1-propenyl trimethylsilyl ether followed by reduction
of the nitro groups. After the introduction of hydrophilic butanesulfonate
moieties, homo- and heterocondensations with glutaconaldehyde dianilide
provided symmetrical and unsymmetrical ICG derivatives, which exhibit
near infrared (NIR) absorption and fluorescence emission similar
to those of ICG. NIR fluorescence labeling reagent was synthesized
using the amino group in the ICG derivative. The 1,3-dipolar cycloaddition
with benzyl azide was performed utilizing copper nanoparticles toward
a versatile method for the synthesis of NIR molecular imaging probes.
Key words
cycloaddition - indoles - nucleophilic aromatic
substitution - indocyanine green - near infrared
fluorescence
References and Notes
<A NAME="RU06711ST-1">1 </A>
Caesar J.
Shaldon S.
Chiandussi L.
Guevara L.
Sheriock S.
Clin.
Sci.
1961,
21:
43
<A NAME="RU06711ST-2">2 </A>
Flanagan JH.
Khan SH.
Menchen S.
Soper SA.
Hammer RP.
Bioconjugate Chem.
1997,
8:
751
<A NAME="RU06711ST-3">3 </A>
Licha K.
Riefke B.
Ntziachristos V.
Becker A.
Chance B.
Semmler W.
Photochem. Photobiol.
2000,
72:
392
<A NAME="RU06711ST-4">4 </A>
Lin Y.
Weissleder R.
Tung C.-H.
Bioconjugate
Chem.
2002,
13:
605
<A NAME="RU06711ST-5A">5a </A>
Achilefu S.
Jimenez HN.
Dorshow RB.
Bugaj JE.
Webb EG.
Wilhelm RR.
Rajagopalan R.
Johler J.
Erion JL.
J.
Med. Chem.
2002,
45:
2003
<A NAME="RU06711ST-5B">5b </A>
Zhang Z.
Berezin MY.
Kao JLF.
d’Avignon A.
Bai M.
Achilefu S.
Angew.
Chem. Int. Ed.
2008,
47:
3584
<A NAME="RU06711ST-5C">5c </A>
Pu Y.
Wang WB.
Das BB.
Achilefu S.
Alfano RR.
Appl.
Opt.
2008,
47:
2281
<A NAME="RU06711ST-5D">5d </A>
Almutairi A.
Guillaudeu
SJ.
Berezin MY.
Achilefu S.
Fréchet JMJ.
J. Am. Chem. Soc.
2008,
130:
444
<A NAME="RU06711ST-6">6 </A>
Pharm W.
Cassell L.
Gillman A.
Koktysh D.
Gore
JC.
Chem. Commun.
2008,
16:
1895
<A NAME="RU06711ST-7">7 </A>
Pauli J.
Vag T.
Haag R.
Spieles M.
Wenzel M.
Kaiser WA.
Resch-Genger U.
Hilger I.
Eur. J. Med. Chem.
2009,
3496
<A NAME="RU06711ST-8">8 </A>
Escobedo JO.
Rusin O.
Lim S.
Strongin RM.
Curr. Opin. Chem. Biol.
2010,
14:
64
<A NAME="RU06711ST-9A">9a </A>
Samanta A.
Vendrell M.
Das R.
Chang Y.-T.
Chem. Commun.
2010,
46:
7406
<A NAME="RU06711ST-9B">9b </A>
Samanta A.
Vendrell M.
Yun S.-W.
Guan Z.
Xu Q.-H.
Chang Y.-T.
Chem. Asian J.
2011,
6:
1353
<A NAME="RU06711ST-9C">9c </A>
Samanta A.
Maiti KK.
Soh K.-S.
Liao X.
Vendrell M.
Dinishi US.
Yun S.-W.
Bhuvaneswari R.
Kim H.
Rautela S.
Chung J.
Olivo M.
Chang Y.-T.
Angew.
Chem. Int. Ed.
2011,
50:
6089
<A NAME="RU06711ST-10A">10a </A>
Kosaka N.
Mitsunaga M.
Longmire MR.
Choyke
PL.
Kobayashi H.
Int. J.
Cancer
2011,
129:
1671
<A NAME="RU06711ST-10B">10b </A>
Baker KJ.
Proc. Soc. Exp. Biol. Med.
1966,
122:
957
<A NAME="RU06711ST-11A">11a </A>
Ernst LA.
Gupta RK.
Mujumdar RB.
Waggoner AS.
Cytometry
1989,
10:
3
<A NAME="RU06711ST-11B">11b </A>
Mujumdar RB.
Ernst LA.
Mujumdar SR.
Waggoner AS.
Cytometry
1989,
10:
11
<A NAME="RU06711ST-11C">11c </A>
Southwick PL.
Ernst LA.
Tauriello EW.
Parker SR.
Mujumdar RB.
Mujumdar SR.
Clever
HA.
Waggoner AS.
Cytometry
1990,
11:
418
<A NAME="RU06711ST-11D">11d </A>
Mujumdar RB.
Ernst LA.
Mujumdar SR.
Lewis CJ.
Waggoner AS.
Bioconjugate Chem.
1993,
4:
105
For reviews:
<A NAME="RU06711ST-12A">12a </A>
Robinson B.
Chem.
Rev.
1963,
63:
373
<A NAME="RU06711ST-12B">12b </A>
Robinson B.
Chem.
Rev.
1969,
69:
227
<A NAME="RU06711ST-12C">12c </A>
Hughes
DL.
Org. Prep. Proced. Int.
1993,
25:
607
<A NAME="RU06711ST-13">13 </A>
Borsche W.
Ber.
Dtsch. Chem. Ges.
1917,
50:
1339
<A NAME="RU06711ST-14">14 </A>
Boyer JH.
Buriks RS.
Org. Synth., Collect.
Vol. V
1973,
1067
<A NAME="RU06711ST-15">15 </A>
Blanco L.
Amice P.
Conia JM.
Synthesis
1976,
194
<A NAME="RU06711ST-16A">16a </A>
RajanBabu TV.
Fukunaga T.
J.
Org. Chem.
1984,
49:
4571
<A NAME="RU06711ST-16B">16b </A>
RajanBabu TV.
Reddy GS.
Fukunaga T.
J. Am. Chem. Soc.
1985,
107:
5473
<A NAME="RU06711ST-16C">16c </A>
RajanBabu TV.
Chenard BL.
Petti MA.
J. Org. Chem.
1986,
51:
1704
<A NAME="RU06711ST-17">17 </A>
RajanBabu et al. reported α-nitroarylation
by aromatic nucleophilic substitution with silyl enol ethers was performed
using TASF in THF-MeCN at rather lower temperatures such
as -60 ˚C. See ref. 16.
<A NAME="RU06711ST-18">18 </A>
Meisenheimer J.
Liebigs
Ann. Chem.
1902,
323:
205
<A NAME="RU06711ST-19">19 </A>
Saeki S.
Hayashi T.
Hamana M.
Heterocycles
1984,
22:
545
<A NAME="RU06711ST-20">20 </A>
Synthesis of 5-amino-1-δ-sulfobutyl-2,3,3-trimethyl-(3H )-indolenine and its cyanine derivatives
was reported in ref. 11b.
<A NAME="RU06711ST-21">21 </A>
Compound 3c was
prepared from 1,1,2-trimethyl-(1H )-benz[e ]indole and 1,4-butane sultone
according to standard methods.
<A NAME="RU06711ST-22">22 </A>
Demas JN.
Crosby GA.
J. Phys. Chem.
1971,
75:
991
<A NAME="RU06711ST-23">23 </A>
Benson RC.
Kues HA.
J. Chem. Eng. Data
1977,
22:
379
<A NAME="RU06711ST-24">24 </A>
Tornøe CW.
Chirstensen C.
Meldal M.
J. Org. Chem.
2002,
67:
3057
<A NAME="RU06711ST-25">25 </A>
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless
KB.
Angew.
Chem. Int. Ed.
2002,
41:
2596
<A NAME="RU06711ST-26">26 </A>
Kunishima M.
Kawachi C.
Hioki K.
Terao K.
Tani S.
Tetrahedron
2001,
57:
1551
<A NAME="RU06711ST-27">27 </A>
Doi T.
Numajiri Y.
Takahashi T.
Takagi M.
Shin-ya K.
Chem. Asian
J.
2011,
6:
180
<A NAME="RU06711ST-28">28 </A>
Park IS.
Kwon MS.
Kim Y.
Lee JS.
Park J.
Org. Lett.
2008,
10:
497
It has been demonstrated that fluorescence
of a low quantum yield molecular fluorophore, such as ICG, is strongly enhanced
by the plasmon resonance energy utilizing metalic nanoshells, see:
<A NAME="RU06711ST-29A">29a </A>
Tam F.
Goodrich GP.
Johnson BR.
Halas NJ.
Nano
Lett.
2007,
7:
496
<A NAME="RU06711ST-29B">29b </A>
Bardhan R.
Grady NK.
Halas NJ.
Small
2008,
4:
1716