Abstract
Starting from a 19-membered (12E )-cycloalkene
prepared by ring-closing metathesis, amphidinolide T1 and T4 were efficiently
synthesized via a short sequence of selective functionalization.
The key steps highlighted stereoselective dihydroxylation of the
(E )-C12-C13 double bond and
highly regioselective silylation/desilylation of the (12S ,13S )-diol.
In particular, a significant solvent effect was discovered for suppressing
1,4 O→O silyl migration or disilylation during selective
mono-silylation of the (12R ,13R )- and (12S ,13S )-diols in toluene. In combination with
our previous synthesis of amphidinolide T3, the same (12E )-cycloalkene serves as an
advanced common intermediate for concise diverted total synthesis
of amphidinolide T family of marine macrolides.
Key words
alkenes - dihydroxylation - macrocycles - osmium - total synthesis
References and Notes
For reviews, see:
<A NAME="RW50511ST-1A">1a </A>
Wilson RM.
Danishefsky SJ.
J.
Org. Chem.
2006,
71:
8329
<A NAME="RW50511ST-1B">1b </A>
Cragg GM.
Grothaus PG.
Newman DJ.
Chem. Rev.
2009,
109:
3012
<A NAME="RW50511ST-1C">1c </A>
Szpilman AM.
Carreira EM.
Angew.
Chem. Int. Ed.
2010,
49:
9592
<A NAME="RW50511ST-1D">1d </A>
Fürstner A.
Isr. J. Chem.
2011,
51:
329
<A NAME="RW50511ST-1E">1e </A> Also, see:
Wender PA.
Miller BL.
Nature
(London)
2009,
460:
197
<A NAME="RW50511ST-1F">1f </A>
Ghosh AK.
J. Org. Chem.
2010,
75:
7967
For reviews, see:
<A NAME="RW50511ST-2A">2a </A>
Kobayashi J.
Tsuda M.
Nat. Prod. Rep.
2004,
21:
77
<A NAME="RW50511ST-2B">2b </A>
Kobayashi J.
Kubota T.
J. Nat. Prod.
2007,
70:
451
<A NAME="RW50511ST-2C">2c </A>
Kobayashi J.
J.
Antibiot.
2008,
61:
271
<A NAME="RW50511ST-3A">3a </A>
Tsuda M.
Endo T.
Kobayashi J.
J. Org. Chem.
2000,
65:
1349
<A NAME="RW50511ST-3B">3b </A>
Kobayashi J.
Kubota T.
Endo T.
Tsuda M.
J. Org. Chem.
2001,
66:
134
<A NAME="RW50511ST-3C">3c </A>
Kubota T.
Endo T.
Tsuda M.
Shiro M.
Kobayashi J.
Tetrahedron
2001,
57:
6175
For total synthesis of amphidinolide
T1, see:
<A NAME="RW50511ST-4A">4a </A>
Ghosh AK.
Liu C.
J. Am. Chem.
Soc.
2003,
125:
2374
<A NAME="RW50511ST-4B">4b </A>
Aïssa C.
Riveiros R.
Ragot J.
Fürstner A.
J.
Am. Chem. Soc.
2003,
125:
15512
<A NAME="RW50511ST-4C">4c </A>
Colby EA.
O’Brien KC.
Jamison TF.
J. Am. Chem. Soc.
2004,
126:
998
<A NAME="RW50511ST-4D">4d </A>
Colby EA.
O’Brien KC.
Jamison TF.
J. Am. Chem. Soc.
2005,
127:
4297
<A NAME="RW50511ST-4E">4e </A>
Yadav JS.
Reddy CS.
Org.
Lett.
2009,
11:
1705
<A NAME="RW50511ST-5">5 </A> For total synthesis of amphidinolide
T2, see:
Li H.
Wu J.
Luo J.
Dai W.-M.
Chem.
Eur. J.
2010,
16:
11530
For total synthesis of amphidinolide
T3, see:
<A NAME="RW50511ST-6A">6a </A>
Deng
L.-S.
Huang X.-P.
Zhao G.
J.
Org. Chem.
2006,
71:
4625
<A NAME="RW50511ST-6B">6b </A>
Wu D.
Li H.
Jin J.
Wu J.
Dai W.-M.
Synlett
2011,
895
<A NAME="RW50511ST-6C">6c </A>
See ref. 4b.
For total synthesis of amphidinolide
T4, see:
<A NAME="RW50511ST-7A">7a </A>
Fürstner A.
Aïssa C.
Riveiros R.
Ragot J.
Angew. Chem.
Int. Ed.
2002,
41:
4763
<A NAME="RW50511ST-7B">7b </A>
See also refs. 4b and
4d.
For synthesis of fragments, see:
<A NAME="RW50511ST-8A">8a </A>
O’Brien KC.
Colby EA.
Jamison TF.
Tetrahedron
2005,
61:
6243
<A NAME="RW50511ST-8B">8b </A>
Abbineni C.
Sasmal PK.
Mukkanti K.
Iqbal J.
Tetrahedron Lett.
2007,
48:
4259
<A NAME="RW50511ST-8C">8c </A>
Luo J.
Li H.
Wu J.
Xing X.
Dai W.-M.
Tetrahedron
2009,
65:
6828
<A NAME="RW50511ST-8D">8d </A>
Sasmal PK.
Abbineni C.
Iqbal J.
Mukkanti K.
Tetrahedron
2010,
66:
5000
<A NAME="RW50511ST-8E">8e </A>
Clark JS.
Labre F.
Thomas LH.
Org. Biomol. Chem.
2011,
9:
4823
For selective reviews on RCM, see:
<A NAME="RW50511ST-9A">9a </A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RW50511ST-9B">9b </A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
<A NAME="RW50511ST-9C">9c </A>
Trnka TM.
Grubbs RH.
Acc.
Chem. Res.
2001,
34:
18
<A NAME="RW50511ST-9D">9d </A>
Schrock RR.
Hoveyda AH.
Angew.
Chem. Int. Ed.
2003,
42:
4592
<A NAME="RW50511ST-9E">9e </A>
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
<A NAME="RW50511ST-9F">9f </A>
Grubbs RH.
Tetrahedron
2004,
60:
7117
<A NAME="RW50511ST-9G">9g </A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
<A NAME="RW50511ST-9H">9h </A>
Gradillas A.
Pérez-Castells J.
Angew. Chem.
Int. Ed.
2006,
45:
6086
<A NAME="RW50511ST-9I">9i </A>
Schrodi Y.
Pederson RL.
Aldrichimica Acta
2007,
40:
45
<A NAME="RW50511ST-9J">9j </A>
Hoveyda AH.
Zhugralin AR.
Nature
(London)
2007,
450:
243
<A NAME="RW50511ST-9K">9k </A> Also see:
Handbook of Metathesis
Vol.
1:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
<A NAME="RW50511ST-9L">9l </A>
Handbook
of Metathesis
Vol. 2:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
<A NAME="RW50511ST-9M">9m </A>
Handbook
of Metathesis
Vol. 3:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
For recent reviews on AD, see:
<A NAME="RW50511ST-10A">10a </A>
Zaitsev AB.
Adolfsson H.
Synthesis
2006,
1725
<A NAME="RW50511ST-10B">10b </A>
Français A.
Bedel O.
Haudrechy A.
Tetrahedron
2008,
64:
2495
For our total synthesis of macrolides
using RCM strategy, see:
<A NAME="RW50511ST-11A">11a </A>
Chen Y.
Jin J.
Wu J.
Dai W.-M.
Synlett
2006,
1177
<A NAME="RW50511ST-11B">11b </A>
Jin J.
Chen Y.
Wu J.
Dai W.-M.
Org. Lett.
2007,
9:
2585
<A NAME="RW50511ST-11C">11c </A>
Dai W.-M.
Chen Y.
Jin J.
Wu J.
Lou J.
He Q.
Synlett
2008,
1737
<A NAME="RW50511ST-11D">11d </A>
Sun L.
Feng G.
Guan Y.
Liu Y.
Wu J.
Dai W.-M.
Synlett
2009,
2361
<A NAME="RW50511ST-11E">11e </A>
Liu Y.
Wang J.
Li H.
Wu J.
Feng G.
Dai W.-M.
Synlett
2010,
2184
<A NAME="RW50511ST-11F">11f </A>
Liu Y.
Feng G.
Wang J.
Wu J.
Dai
W.-M.
Synlett
2011,
1774
For selected examples of 1,4 O→O
silyl migration, see:
<A NAME="RW50511ST-12A">12a </A>
Ogilvie KK.
Beaucage SL.
Schifman AL.
Theriault NY.
Sadana KL.
Can. J. Chem.
1978,
56:
2768
<A NAME="RW50511ST-12B">12b </A>
Jones SS.
Reese CB.
J.
Chem. Soc., Perkin Trans. 1
1979,
2762
<A NAME="RW50511ST-12C">12c </A>
Evans DA.
Gauchet-Prunet JA.
Carreira EM.
Charette AB.
J. Org. Chem.
1991,
56:
741
<A NAME="RW50511ST-12D">12d </A>
Yamazaki T.
Mizutani K.
Kitazume T.
J.
Org. Chem.
1993,
58:
4346
<A NAME="RW50511ST-12E">12e </A>
Yamazaki T.
Oniki T.
Kitazume T.
Tetrahedron
1996,
52:
11753
<A NAME="RW50511ST-12F">12f </A>
Lassaletta JM.
Schmidt RR.
Synlett
1995,
925
<A NAME="RW50511ST-12G">12g </A>
Lassaletta JM.
Meichle M.
Weiler S.
Schmidt RR.
J.
Carbohydr. Chem.
1996,
15:
241
<A NAME="RW50511ST-12H">12h </A>
Masaguer CF.
Blériot Y.
Charlwood J.
Winchester BG.
Leet GWJ.
Tetrahedron
1997,
53:
15147
<A NAME="RW50511ST-12I">12i </A>
Boger DL.
Ichikawa S.
Zhong W.
J. Am. Chem. Soc.
2001,
123:
4161
<A NAME="RW50511ST-12J">12j </A>
Hunter TJ.
O’Doherty GA.
Org.
Lett.
2001,
3:
1049
<A NAME="RW50511ST-12K">12k </A>
Teranish K.
Ueno F.
Tetrahedron Lett.
2003,
44:
4843
<A NAME="RW50511ST-12L">12l </A>
Zhao ZQ.
Peng LZ.
Li YL.
Chin. Chem. Lett.
2005,
16:
290
<A NAME="RW50511ST-12M">12m </A>
Perali RS.
Mandava S.
Chunduri VR.
Tetrahedron Lett.
2011,
52:
3045
<A NAME="RW50511ST-12N">12n </A> Also see:
Rücher C.
Chem. Rev.
1995,
95:
1009
<A NAME="RW50511ST-12O">12o </A>
Wuts PGM.
Greene TW.
Greene’s Protective Groups in Organic
Synthesis
4th ed.:
John Wiley & Sons;
New
Jersey:
2007.
p.166
<A NAME="RW50511ST-13">13 </A>
Chem3D models show that the (13R )-OH group in 5 orients opposite
to both the (12R )-OH and the (14R )-Me groups while (13S )-OH
group in 6 aligns closely with both the (12S )-OH and the (14R )-Me
groups. It should be possible for hydrogen bonding or 1,4 O→O
silyl migration to take place in 6 but
not in 5 .
<A NAME="RW50511ST-14">14 </A>
Characterization
Data for Amphidinolide T4 (3) : colorless oil; [α]D
²0 -9.6
(c = 0.12, CHCl3 ),
lit.4b,4d,7a [α]D
²³ -7.5
(c = 0.8, CHCl3 ), [α]D
²0 -3.0
(c = 0.12, CHCl3 ); R
f
0.35 (20% EtOAc
in hexane). IR (film): 3458 (br), 2934, 1724, 1459, 1252, 1071 cm-¹ . ¹ H
NMR and ¹³ C NMR data are identical
to those of natural amphidinolide T4 (see Figures S3 and S4 in the
Supporting Information). HRMS (+ESI):
m /z [M + H+ ] calcd
for C25 H43 O5 : 423.3111; found: 423.3116.
<A NAME="RW50511ST-15">15 </A>
Characterization
Data for Amphidinolide T1 (1) : colorless oil; [α]D
²0 +20.3
(c = 0.15, CHCl3 ),
lit.³a [α]D
²0 +18 (c = 0.3, CHCl3 );
R
f
0.27 (17% EtOAc
in hexane). IR (film): 3401 (br), 2928, 1727, 1463, 1253, 1060 cm-¹ ; ¹ H
NMR and ¹³ C NMR data are identical
to those of natural amphidinolide T1 (see Figures S1 and S2 in the
Supporting Information). HRMS (+ESI): m /z [M + H+ ] calcd
for C25 H43 O5 : 423.3111; found:
423.3104.