Subscribe to RSS
DOI: 10.1055/s-0031-1289566
An Efficient Pyrrole Synthesis via Silaphenylmercuric Triflate Catalyzed Cyclization of Homopropargyl Azides
Publication History
Publication Date:
09 November 2011 (online)

Abstract
A mixture of phenylmercuric acetate and trifluoromethanesulfonic acid or silica gel supported phenylmercuric trifluoromethanesulfonate (silaphenyl mercuric triflate) efficiently catalyzed the formation of pyrroles from homopropargyl azide derivatives. The reactions proceed using 20 mol% of the heterogeneous catalyst with yields of isolated pyrroles ranging from 74% to 99%.
Key words
cyclization - heterocycles - heterogeneous catalysis - azides - alkynes
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Jones A. PyrrolesJones RA. Wiley; New York: 1990. p.105Reference Ris Wihthout Link - 1b
Sundberg RJ. Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV. Elsevier; Oxford: 1996. p.119Reference Ris Wihthout Link - 1c
Eicher T.Hauptmann S.Speicher A. The Chemistry of Heterocycles 2nd ed.: Wiley-VCH; Weinheim: 2003. p.97Reference Ris Wihthout Link - 1d
Fan H.Peng J.Hamann MT.Hu J.-F. Chem. Rev. 2008, 108: 264Reference Ris Wihthout Link - 2a
Patil NT.Yamamoto Y. Chem. Rev. 2008, 108: 3395Reference Ris Wihthout Link - 2b
Patil NT.Yamamoto Y. ARKIVOC 2007, (x): 121Reference Ris Wihthout Link - 3a
Knorr L. Ber. Dtsch. Chem. Ges. 1884, 17: 1635Reference Ris Wihthout Link - 3b
Paal C. Ber. Dtsch. Chem. Ges. 1884, 17: 2756Reference Ris Wihthout Link - 3c
Amarnath V.Anthony DC.Amarnath K.Valentine WM. J. Org. Chem. 1991, 56: 6924Reference Ris Wihthout Link - 3d
Pridmore SJ.Slatford PA.Taylor JE.Whittlesey MK.Williams JMJ. Tetrahedron 2009, 65: 8981Reference Ris Wihthout Link - 3e
Azizi N.Khajeh-Amiri A.Ghafuri H.Bolourtchian M.Saidi MR. Synlett 2009, 2245Reference Ris Wihthout Link - 3f
Rivera S.Bandyopadhyay D.Banik BK. Tetrahedron Lett. 2009, 50: 5445Reference Ris Wihthout Link - 3g
Chen J.Wu H.Zheng Z.Jin C.Zhang X.Su W. Tetrahedron Lett. 2006, 47: 5383Reference Ris Wihthout Link - 4
Hantzch A. Ber. Dtsch. Chem. Ges. 1890, 23: 1474Reference Ris Wihthout Link - 5a
Trost BM.Doherty GA. J. Am. Chem. Soc. 2000, 122: 3801Reference Ris Wihthout Link - 5b
Muchowski JM. Adv. Med. Chem. 1992, 1: 109Reference Ris Wihthout Link - 5c
Xia M.Huang G. J. Org. Chem. 2010, 75: 7842Reference Ris Wihthout Link - 6
Gorin DJ.Davis NR.Toste FD. J. Am. Chem. Soc. 2005, 127: 11260Reference Ris Wihthout Link - 7a
Reddy VP.Kumar AV.Rao KR. Tetrahedron Lett. 2011, 52: 777Reference Ris Wihthout Link - 7b
Sharma R.Chouhan M.Sood D.Nair VA. Appl. Organomet. Chem. 2011, 25: 305Reference Ris Wihthout Link - 7c
Rakshit S.Patureau FW.Glorius F. J. Am. Chem. Soc. 2010, 132: 9585Reference Ris Wihthout Link - 7d
Ribeiro Laia FM.Cardoso AL.Beja AM.Silva MR.Pinho e Melo TMVD. Tetrahedron 2010, 66: 8815Reference Ris Wihthout Link - 7e
Queiroz M.-JRP.Begouin A.Pereira G.Ferreira PMT. Tetrahedron 2008, 64: 10714Reference Ris Wihthout Link - 7f
Oda M.Fukuchi Y.Ito S.Thanh NC.Kuroda S. Tetrahedron Lett. 2007, 48: 9159Reference Ris Wihthout Link - 7g
Martin R.Rivero MR.Buchwald SL. Angew. Chem. Int. Ed. 2006, 45: 7079Reference Ris Wihthout Link - 7h
Harrison TJ.Kozak JA.Corbella-Pané M.Dake GR. J. Org. Chem. 2006, 71: 4525Reference Ris Wihthout Link - 7i
Nishino F.Miki K.Kato Y.Ohe K.Uemura S. Org. Lett. 2003, 5: 2615Reference Ris Wihthout Link - 7j
Ranu BC.Dey SS. Tetrahedron Lett. 2003, 44: 2865Reference Ris Wihthout Link - 7k
Utimoto K.Miwa H.Nozaki H. Tetrahedron Lett. 1981, 22: 4277Reference Ris Wihthout Link - 8
Hiroya K.Matsumoto S.Ashikawa M.Ogiwara K.Sakamoto T. Org. Lett. 2006, 8: 5349Reference Ris Wihthout Link - 9
Wyrūbek P.Sniady A.Bewick N.Li Y.Mikus A.Wheeler KA.Dembinski R. Tetrahedron 2009, 65: 1268Reference Ris Wihthout Link - 10
Nishizawa M.Skwarczynski M.Imagawa H.Sugihara T. Chem. Lett. 2002, 12Reference Ris Wihthout Link - 11
Nishizawa M.Imagawa H.Yamamoto H. Org. Biomol. Chem. 2010, 8: 511Reference Ris Wihthout Link - 12
Yamamoto H.Sasaki I.Namba K.Imagawa H.Nishizawa M. Org. Lett. 2007, 9: 1399Reference Ris Wihthout Link - 14
Yamamoto H.Sasaki I.Hirai Y.Namba K.Imagawa H.Nishizawa M. Angew. Chem. Int. Ed. 2009, 48: 1244Reference Ris Wihthout Link - 15a
Rahmatpour A.Aalaie J. Heteroat. Chem. 2011, 22: 85Reference Ris Wihthout Link - 15b
Veisi H. Tetrahedron Lett. 2010, 51: 2109Reference Ris Wihthout Link - 15c
Kumar MA.Krishna AB.Babu BH.Reddy CB.Reddy CS. Synth. Commun. 2008, 38: 3456Reference Ris Wihthout Link - 15d
Nad S.Roler S.Haag R.Breinbauer R. Org. Lett. 2006, 8: 403Reference Ris Wihthout Link - 15e
Curini M.Montanari F.Rosati O.Lioy E.Margarita R. Tetrahedron Lett. 2003, 44: 3923Reference Ris Wihthout Link
References and Notes
When the cyclization reaction of 1 with Hg(OTf)2 was quenched using Et3N and NaCl at -20 ˚C, the formation of pyrrolic mercury chloride corresponds to 7 was confirmed by ¹H NMR spectroscopy. However, pyrrolic mercury chloride was unstable under acidic conditions. During column chromatography on silica gel pyrrolic mercury chloride decomposed into 2.
16
Preparation of
Silaphenylmercuric Triflate (10) and a Typical Experimental Procedure
for a Silaphenyl-mercuric Triflate Catalyzed Cyclization
To
a suspension of dried silaphenylmercuric acetate 9 (0.2 mmol/g,
500 mg, 0.1 mmol) in MeNO2 (5 mL) was added TfOH (17.4 µL,
0.2 mmol), and the mixture was stirred for 10 min at r.t. The filtered
residue was washed with MeNO2 (10 mL) and dried to give
silaphenylmercuric triflate 10. Next, MeNO2 (4
mL) and prepared 10 were added to a dried two-neck
flask. To the stirred suspension of 10 was
added a solution of 1 (86 mg, 0.5 mmol)
in MeNO2 (1 mL) at r.t. under argon. The mixture was
stirred at r.t. for 5 min, and the catalyst was then removed by
filtration and washed with MeNO2 (10 mL). The combined
filtrates were concentrated under reduced pressure. Purification
by column chromatog-raphy on silica gel using hexane and EtOAc (10:1)
gave pyrrole 2 (70 mg, 97%).
In all cases (Table [³] ), recovery of 10 was between 99.29% and 99.89%.