Synlett 2011(18): 2725-2729  
DOI: 10.1055/s-0031-1289539
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Access to 3-Methylene-1H-indanol through Asymmetric Domino Allylstannylation-Heck Reaction

Jutta Schütte, Shute Ye, Hans-Günther Schmalz*
Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany
Fax: +49(221)4703064; e-Mail: schmalz@uni-koeln.de;
Further Information

Publication History

Received 24 August 2011
Publication Date:
19 October 2011 (online)

Abstract

By screening various chiral P,P-ligands in the palladium-catalyzed reaction of ortho-iodobenzaldehyde with allyl tributylstannane, a suitable ligand (Taniaphos) was identified that affords 3-methylene-1-indanol with an enantioselectivity of 96% ee. This result indicates that a ligated palladium intermediate is involved in the chirogenic step of the catalytic cycle (intramolecular electrophilic activation of the aldehyde function by ortho-palladation).

    References and Notes

  • 1a Handbook of Organopalladium Chemistry for Organic Synthesis   Vols. 1 and 2:  Negishi E. de Meijere A. John Wiley; New York: 2002. 
  • 1b Tsuji J. Palladium Reagents and Catalysts   John Wiley; Chichester: 1995. 
  • 1c Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  Diederich F. Stang P. Wiley-VCH; Weinheim: 2004. 
  • 2 Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules   University Science Books; Sausalito: 1999. 
  • 3a Heck RF. Dieck HA. J. Am. Chem. Soc.  1974,  96:  1133 
  • for selected reviews, see:
  • 3b Heck RF. Org. React.  1982,  27:  345 
  • 3c de Meijere A. Meyer FE. Angew. Chem., Int. Ed. Engl.  1994,  33:  2379 ; Angew. Chem. 1994, 106, 2473
  • 3d Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 3e Dounay AB. Overman LE. Chem. Rev.  2003,  103:  2945 
  • 4a Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  508 
  • 4b Espinet P. Echavarren AM. Angew. Chem. Int. Ed.  2004,  43:  4704 
  • 5a Tietze LF. Beifuss U. Angew. Chem., Int. Ed. Engl.  1993,  32:  131 ; Angew. Chem. 1993, 105, 137
  • 5b Tietze LF. Chem. Rev.  1996,  96:  115 
  • 5c Domino Reactions in Organic Synthesis   Tietze LF. Brasche G. Gericke K. Wiley-VCH; Weinheim: 2006. 
  • For recent examples of domino processes involving palladium catalysis, see:
  • 5d Braun M. Richrath B. Synlett  2009,  968 
  • 5e Rudolph A. Rackelmann N. Turcotte-Savard MO. Lautens M.
    J. Org. Chem.  2009,  74:  289 
  • 5f Tietze LF. Düfert A. Lotz F. Sölter L. Oum K. Lenzer T. Beck T. Herbst-Irmer R. J. Am. Chem. Soc.  2009,  131:  17879 
  • 5g Leibeling M. Koester DC. Pawliczek M. Schild SC. Werz DB. Nature Chem. Biol.  2010,  6:  199 
  • 6 Agrawal YK. Bhatt HG. Raval HG. Oza PM. Gogoi PJ. Mini-Reviews in Medicinal Chemistry  2007,  7:  453 
  • 7 Cvengroš J. Schütte J. Schlörer N. Neudörfl J.-M. Schmalz H.-G. Angew. Chem. Int. Ed.  2009,  48:  6148 ; Angew. Chem. 2009, 121, 6264
  • 8a Denmark SE. Fu J. Chem. Rev.  2003,  103:  2763 
  • 8b Marshall JA. Chem. Rev.  1996,  96:  31 
  • For a related formation of 3-methylene-1-indanols through intramolecular Heck reaction, see:
  • 9a Kündig EP. Ratni H. Crousse B. Bernardinelli G. J. Org. Chem.  2001,  66:  1852 
  • 9b Fields WH. Khan AK. Sabat M. Chruma JJ. Org. Lett.  2008,  10:  5131 
  • For the palladium-catalyzed conversion of 4a into rac-9 using allene as a reagent, see:
  • 9c Gai X. Grigg R. Collard S. Muir JE. Chem. Commun.  2000,  1765 
  • 9d Anwar U. Grigg R. Rasparini M. Savic V. Sridvaran V. Chem. Commun.  2000,  645 
  • 10a

    While complexes of type 5 have been characterized, see, for instance Vicente et al.¹0b, we are aware that cationic intermediates resulting from dissociation of X- may be involved

  • 10b Vicente J. Abad JA. Martinez-Viviente E. Ramirez de Arellano MC. Organometallics  2000,  19:  752 
  • 11a Marshall JA. Tang Y. Synlett  1992,  653 
  • 11b Costa AL. Piazza MG. Tagliavini E. Trombini C. Umani-Ronchi A. J. Am. Chem. Soc.  1993,  115:  7001 
  • 11c Keck GE. Tarbet KH. Geraci LS. J. Am. Chem. Soc.  1993,  115:  8467 
  • 11d Bedford RB. Pilarski LT. Tetrahedron Lett.  2008,  49:  4216 
  • For reviews, see:
  • 11e Yanagisawa A. In Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Heidelberg: 1999.  Chap. 27.
  • 11f Denmark SE. Fu J. Chem. Rev.  2003,  103:  2763 
  • We assume a cyclic transition state on the basis of a recent DFT study on the palladium-mediated allylstanylation of aldehydes, see:
  • 12a Piechaczyk O. Cantat T. Mezailles N. Le Floch P. J. Org. Chem.  2007,  72:  4228 
  • However, we cannot exclude an acyclic transition state as suggested for instance by Keck et al. See:
  • 12b Keck GE. Savin KA. Cressman ENK. Abbott DE. J. Org. Chem.  1994,  59:  7889 
  • 13a Miyashita A. Yasuda A. Takaya H. Toriumi K. Ito T. Souchi T. Noyori R. J. Am. Chem. Soc.  1980,  102:  7932 
  • 13b For a review on modified Binap ligands, see: Berthod M. Mignani G. Woodward G. Lemaire M. Chem. Rev.  2005,  105:  1801 
  • 14a Kranich R. Eis K. Geis O. Mühle S. Bats JW. Schmalz H.-G. Chem. Eur. J.  2000,  6:  2874 
  • 14b Blume F. Zemolka S. Fey T. Kranich R. Schmalz H.-G. Adv. Synth. Catal.  2002,  344:  868 
  • 14c Velder J. Robert T. Weidner I. Neudörfl J.-M. Lex J. Schmalz H.-G. Adv. Synth. Catal.  2008,  350:  1309 
  • 15a Werle S. Fey T. Neudörfl J.-M. Schmalz H.-G. Org. Lett.  2007,  18:  3555 
  • 15b Robert T. Velder J. Schmalz H.-G. Angew. Chem. Int. Ed.  2008,  47:  7718 ; Angew. Chem. 2008, 120, 7832
  • 15c Robert T. Abiri Z. Wassenaar J. Sandee AJ. Romanski S. Neudörfl J.-M. Schmalz H.-G. Reek JNH. Organometallics  2010,  29:  478 
  • 16 For a review of biaryl-type P,P-ligands, see: Shimizu H. Nagasaki I. Saito T. Tetrahedron  2005,  61:  5405 
  • 17 Togni A. Breutel C. Schnyder A. Spindler F. Landert H. Tijani A. J. Am. Chem. Soc.  1994,  116:  4062 
  • 18a Ireland T. Großheimann G. Wieser-Jeunesse C. Knochel P. Angew. Chem.  1999,  111:  3397 
  • 18b For a review on ferreocene-based ligands, see: Gomez Array R. Adrio J. Carretero JC. Angew. Chem. Int. Ed.  2006,  45:  7674 ; Angew. Chem. 2006, 118, 7836
  • For recent examples of the assignment of absolute configurations through TDDFT-calculated CD spectra, see:
  • 20a Hussain H. Krohn K. Flörke U. Schulz B. Draeger S. Pescitelli G. Antus S. Kurtán T. Eur. J. Org. Chem.  2007,  13:  292 
  • 20b Krohn K. Zia-Ullah HH. Flörke U. Schulz B. Draeger S. Pescitelli G. Antus S. Kurtán T. Chirality  2007,  19:  464 
  • 20c Di Bari L. Pescitelli G. Salvadori P. Rovini M. Anzini M. Cappelli A. Vomero S. Tetrahedron: Asymmetry  2006,  17:  3430 
  • 21 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision d.02   Gaussian, Inc.; Pittsburgh: 2003. 
  • 22a Becke AD. J. Chem. Phys.  1993,  98:  5648 
  • 22b Becke AD. J. Chem. Phys.  1993,  98:  1372 
  • 22c Stephens PJ. Devlin FJ. Chabalowski CF. Frisch MJ. J. Phys. Chem.  1994,  98:  11623 
  • 24a Parac M. Grimme S. Chem. Phys.  2003,  292:  11 
  • 24b Grimme S. Parac M. ChemPhysChem  2003,  292 
  • 24c Jaffé HH. Orchin M. In Theory and applications of ultraviolet spectroscopy   Wiley; New York: 1962.  p.242 
  • 24d Pescitelli G. Di Bari L. Caporusso AM. Salvadori P. Chirality  2008,  20:  393 
19

All minima of 9 were optimized with DFT, B3LYP/6-31G(d) using Gaussian 03.²¹

23

TZVP is a triple-ζ basis set with polarization functions

25

Typical procedure: 2-Iodobenzaldehyde (4a; 116 mg, 0.5 mmol), [Pd2dba3] (10.4 mg, 10 µmol, 2 mol%) and ligand L15 (Taniaphos, 15 µmol, 3 mol%) were dissolved in anhydrous DMF (5 mL) under an argon atmosphere. Allyl tributylstannane (0.31 mL, 1.0 mmol, 2 equiv) was added and the resulting mixture was stirred at 80 ˚C for 15 h. After cooling to r.t. sat. aq KF (15 mL) was added and the mixture was extracted with methyl tert-butyl ether (3 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO4 and solvents were evaporated. The residue was purified by flash chromatography (SiO2-KF, 9:1; eluting with cyclohexane-EtOAc, 4:1) to give 9 (38 mg, 52%) as a white-yellowish solid. The enantiomeric purity was determined as 96% ee by means of chiral HPLC (Machery-Nagel Nucleocel Delta S; n-hex-i-PrOH, 99:1; 0.5 mL/min); R f  = 0.38 (Cyhex-EtOAc, 3:1); mp 71-72 ˚C; [α]D ²0 -9.1 (c 1.03, CDCl3); ¹H NMR: (300 MHz, CDCl3):
δ = 2.42 (d, ³ J = 7 Hz, 1 H, OH), 2.61 (tdd, 4 J = 2.5 Hz, ³ J = 4 Hz, ² J = 17 Hz, 1 H, H2A), 3.14 (tdd, 4 J = 2 Hz, ³ J = 7 Hz, ² J = 17 Hz, 1 H, H2B), 5.07 (t, 4 J = 2 Hz, 1 H, H8A), 5.20 (dt, ³ J = 7 Hz, ³ J = 4 Hz, 1 H, H1), 5.50 (t, 4 J = 2.5 Hz, 1 H, H8B), 7.26-7.34, 7.39-7.45, 7.46-7.53 (3 × m, 4 × 1 H, H4, H5, H6, H7); ¹³C NMR (75 MHz, CDCl3): δ = 42.4 (t, C2), 73.2 (d, C1), 104.2 (t, C8), 120.5, 125.0, 128.6, 128.7 (4 × d, C4, C5, C6, C7), 140.1 (s, C3), 146.3, 146.9 (2 × s, C3a, C7a); IR (ATR): 3305 (br, m), 3233 (br, m), 3060 (w), 2921 (w), 2733 (w), 1641 (m), 1471 (m), 1423 (m), 1333 (s), 1044 (s), 873 (s), 756 (s), 730 (s) cm; GC-MS (Optima 1 MS, 10 psi, 50→300 ˚C): t R = 6.51 min; MS (EI, 70 eV): m/z (%) = 146 (42)[M]+, 145 (26), 131 (52), 128 (52), 117 (24), 103 (13), 91 (12), 77 (18), 63 (26), 39 (100); HRMS: m/z calcd for C10H10O: 146.073; found: 146.073 (±0.002).