Semin Hear 2011; 32(3): 248-261
DOI: 10.1055/s-0031-1286619
© Thieme Medical Publishers

Ototoxicity Monitoring: Program Approaches and Considerations

Debra J. Wilmington1 , 2 , Dawn L. Konrad-Martin1 , 2 , Wendy J. Helt1 , Marilyn F. Dille1 , 2 , Jane S. Gordon1 , Stephen A. Fausti1 , 2 , 3
  • 1VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), Portland VA Medical Center, Portland, Oregon
  • 2Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon
  • 3Department of Neurology, Oregon Health & Science University, Portland, Oregon
Further Information

Publication History

Publication Date:
23 September 2011 (online)

ABSTRACT

Therapeutic treatment with ototoxic medications can result in irreversible auditory and/or vestibular dysfunction. Ototoxicity is increasing, partly due to escalating rates of cancer and infection that require treatment with these medications. The resultant hearing disabilities can have severe communicative, vocational and financial consequences, particularly in individuals with pretreatment hearing loss. This guideline will facilitate the implementation of an ototoxicity monitoring program designed to detect signs of ototoxic damage, providing the opportunity for intervention to minimize further damage. Early detection and monitoring of ototoxicity as standards of care will reduce the impact of ototoxic-induced hearing loss, ultimately improving treatment options for patients and preserving posttreatment quality of life.

REFERENCES

  • 1 Barza M, Lauermann M. Why monitor serum levels of gentamicin?.  Clin Pharmacokinet. 1978;  3 202-215
  • 2 Schentag J J. Aminoglycosides. In: Evans W E, Schentag J J, Jusko W J, eds. Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring. San Francisco, CA: Applied Therapeutics; 1980
  • 3 Black F O, Gianna-Poulin C, Pesznecker S C. Recovery from vestibular ototoxicity.  Otol Neurotol. 2001;  22 662-671
  • 4 American Speech-Language-Hearing Association . Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy.  ASHA. 1994;  36 11-19
  • 5 American Academy of Audiology .American Academy of Audiology Position Statement and Clinical Practice Guidelines: Ototoxicity Monitoring. Reston, VA: AAA; 2009: 1-25
  • 6 Fausti S A, Frey R H, Henry J A, Olson D J, Schaffer H I. Early detection of ototoxicity using high-frequency, tone-burst-evoked auditory brainstem responses.  J Am Acad Audiol. 1992;  3 397-404
  • 7 Fausti S A, Henry J A, Schaffer H I, Olson D J, Frey R H, Bagby Jr G C. High-frequency monitoring for early detection of cisplatin ototoxicity.  Arch Otolaryngol Head Neck Surg. 1993;  119 661-666
  • 8 Fausti S A, Larson V D, Noffsinger D, Wilson R H, Phillips D S, Fowler C G. High-frequency audiometric monitoring strategies for early detection of ototoxicity.  Ear Hear. 1994a;  15 232-239
  • 9 Macdonald M R, Harrison R V, Wake M, Bliss B, Macdonald R E. Ototoxicity of carboplatin: comparing animal and clinical models at the Hospital for Sick Children.  J Otolaryngol. 1994;  23 151-159
  • 10 Blakley B W, Myers S F. Patterns of hearing loss resulting from cis-platinum therapy.  Otolaryngol Head Neck Surg. 1993;  109 (3 Pt 1) 385-391
  • 11 Lee J E, Nakagawa T, Kim T S et al.. A novel model for rapid induction of apoptosis in spiral ganglions of mice.  Laryngoscope. 2003;  113 994-999
  • 12 Lee J E, Nakagawa T, Kita T et al.. Mechanisms of apoptosis induced by cisplatin in marginal cells in mouse stria vascularis.  ORL J Otorhinolaryngol Relat Spec. 2004;  66 111-118
  • 13 Alam S A, Ikeda K, Oshima T et al.. Cisplatin-induced apoptotic cell death in Mongolian gerbil cochlea.  Hear Res. 2000;  141 28-38
  • 14 Rybak L P. Mechanisms of cisplatin ototoxicity and progress in otoprotection.  Curr Opin Otolaryngol Head Neck Surg. 2007;  15 364-369
  • 15 Hoistad D L, Ondrey F G, Mutlu C, Schachern P A, Paparella M M, Adams G L. Histopathology of human temporal bone after cis-platinum, radiation, or both.  Otolaryngol Head Neck Surg. 1998;  118 825-832
  • 16 van Ruijven M W, de Groot J C, Klis S F, Smoorenburg G F. The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study.  Hear Res. 2005;  205 241-248
  • 17 Myers S F, Blakley B W, Schwan S, Rintelmann W F, Mathog R H. The “plateau effect” of cis-platinum-induced hearing loss.  Otolaryngol Head Neck Surg. 1991;  104 122-127
  • 18 Rougier F, Claude D, Maurin M et al.. Aminoglycoside nephrotoxicity: modeling, simulation, and control.  Antimicrob Agents Chemother. 2003;  47 1010-1016
  • 19 Dille M F, McMillan G P, Reavis K M, Jacobs P, Fausti S A, Konrad-Martin D. Multivariate ototoxicity risk assessment with distortion-product otoacoustic emissions.  J Acoust Soc Am. 2010;  In press
  • 20 Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity.  Pharmacogenomics. 2005;  6 27-36
  • 21 Riedemann L, Lanvers C, Deuster D et al.. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin.  Pharmacogenomics J. 2008;  8 23-28
  • 22 Fausti S A, Henry J A, Schaffer H I, Olson D J, Frey R H, McDonald W J. Early detection of aminoglycoside ototoxicity by high-frequency (≥8kHz) auditory evaluation.  J Infect Dis. 1992b;  165 1026-1032
  • 23 Fausti S A, Henry J A, Helt W J et al.. An individualized, sensitive frequency range for early detection of ototoxicity.  Ear Hear. 1999;  20 497-505
  • 24 Dreschler W A, van der Hulst R J, Tange R A, Urbanus N A. Clinical Aspects . Role of high-frequency audiometry in the early detection of ototoxicity. II.  Audiology. 1989;  28 211-220
  • 25 Fausti S A, Olson D J, Frey R H, Henry J A, Schaffer H I, Phillips D S. High-frequency toneburst-evoked ABR latency-intensity functions in sensorineural hearing-impaired humans.  Scand Audiol. 1995b;  24 19-25
  • 26 Ress B D, Sridhar K S, Balkany T J, Waxman G M, Stagner B B, Lonsbury-Martin B L. Effects of cis-platinum chemotherapy on otoacoustic emissions: the development of an objective screening protocol. Third place—Resident Clinical Science Award 1998.  Otolaryngol Head Neck Surg. 1999;  121 693-701
  • 27 Fausti S A, Frey R H, Rappaport B Z, Schechter M A. High-frequency audiometry with an earphone transducer.  Semin Hear. 1985;  6 347-357
  • 28 Matthews L J, Lee F S, Mills J H, Dubno J R. Extended high-frequency thresholds in older adults.  J Speech Lang Hear Res. 1997;  40 208-214
  • 29 Schechter M A, Fausti S A, Rappaport B Z, Frey R H. Age categorization of high-frequency auditory threshold data.  J Acoust Soc Am. 1986;  79 767-771
  • 30 Fausti S A, Helt W J, Phillips D S et al.. Early detection of ototoxicity using 1/6th-octave steps.  J Am Acad Audiol. 2003;  14 444-450
  • 31 Reavis K M, Phillips D S, Fausti S A et al.. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.  Ear Hear. 2008;  29 875-893
  • 32 Brownell W E. Outer hair cell electromotility and otoacoustic emissions.  Ear Hear. 1990;  11 82-92
  • 33 Hodges A V, Lonsbury-Martin B L. Hearing management. In: Sullivan P A, Guilford A M, eds. Best Practices in Oncology Management: Focus on Swallowing and Communication Disorders. San Diego, CA: Singular Press; 1998: 269-290
  • 34 Arnold D J, Lonsbury-Martin B L, Martin G K. High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions.  Arch Otolaryngol Head Neck Surg. 1999;  125 215-222
  • 35 Dreisbach L E, Torre III P, Kramer S J, Kopke R, Jackson R, Balough B. Influence of ultrahigh-frequency hearing thresholds on distortion-product otoacoustic emission levels at conventional frequencies.  J Am Acad Audiol. 2008;  19 325-336
  • 36 Gorga M P, Neely S T, Dorn P A, Hoover B M. Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions.  J Acoust Soc Am. 2003;  113 3275-3284
  • 37 Janssen T, Kummer P, Arnold W. Growth behavior of the 2 f1–f2 distortion product otoacoustic emission in tinnitus.  J Acoust Soc Am. 1998;  103 3418-3430
  • 38 Kummer P, Janssen T, Arnold W. The level and growth behavior of the 2 f1–f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss.  J Acoust Soc Am. 1998;  103 3431-3444
  • 39 Dreisbach L E, Long K M, Lees S E. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.  Ear Hear. 2006;  27 466-479
  • 40 Goodman S S, Fitzpatrick D F, Ellison J C, Jesteadt W, Keefe D H. High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans.  J Acoust Soc Am. 2009;  125 1014-1032
  • 41 Neely S T, Gorga M P. Comparison between intensity and pressure as measures of sound level in the ear canal.  J Acoust Soc Am. 1998;  104 2925-2934
  • 42 Scheperle R A, Neely S T, Kopun J G, Gorga M P. Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability.  J Acoust Soc Am. 2008;  124 288-300
  • 43 Fausti S A, Rappaport B Z, Frey R H et al.. Reliability of evoked responses to high-frequency (8–14 kHz) tone bursts.  J Am Acad Audiol. 1991;  2 105-114
  • 44 Mitchell C R, Kempton J B, Creedon T A, Trune D R. The use of a 56-stimulus train for the rapid acquisition of auditory brainstem responses.  Audiol Neurootol. 1999;  4 80-87
  • 45 Henry J A, Fausti S A, Kempton J B, Trune D R, Mitchell C R. Twenty-stimulus train for rapid acquisition of auditory brainstem responses in humans.  J Am Acad Audiol. 2000;  11 103-113
  • 46 Reavis K M, McMillan G, Austin D F et al.. Distortion-product otoacoustic emission test performance for ototoxicity monitoring.  Ear Hear. 2011;  32 61-74
  • 47 Black F O, Pesznecker S, Stallings V. Permanent gentamicin vestibulotoxicity.  Otol Neurotol. 2004;  25 559-569
  • 48 Halmagyi G M, Fattore C M, Curthoys I S, Wade S. Gentamicin vestibulotoxicity.  Otolaryngol Head Neck Surg. 1994;  111 571-574
  • 49 Becvarovski Z, Michaelides E M, Kartush J M, Bojrab D I, LaRouere M J. Rapid elevation of gentamicin levels in the human labyrinth following intravenous administration.  Laryngoscope. 2002;  112 (7 Pt 1) 1163-1165
  • 50 Minor L B. Gentamicin-induced bilateral vestibular hypofunction.  JAMA. 1998;  279 541-544
  • 51 Handelsman J A. Vestibular ototoxicity. ASHA perspective paper. Amer Speech-Lang-Hear Assoc Special Interest Division 6.  Hearing and Hearing Disorders: Research and Diagnostics. 2005;  9 17-21
  • 52 Coles R RA. Epidemiology of tinnitus: (2) demographic and clinical features.  J Laryngol Otol. 1984;  (Suppl 9) 195-202
  • 53 Davies R A, Luxon L M. Dizziness following head injury: a neuro-otological study.  J Neurol. 1995;  242 222-230
  • 54 Meikle M B, Stewart B J, Griest S E et al.. Assessment of tinnitus: measurement of treatment outcomes.  Prog Brain Res. 2007;  166 511-521
  • 55 Dille M F, Konrad-Martin D, Gallun F et al.. Tinnitus onset rates from chemotherapeutic agents and ototoxic antibiotics: results of a large prospective study.  J Am Acad Audiol. 2010b;  21 409-417
  • 56 Dobie R A. Overview: suffering from tinnitus. In: Snow J B, ed. Tinnitus: Theory and Management. Lewiston, NY: BC Decker Inc.; 2004: 1-7
  • 57 Henry J A, Zaugg T L, Schechter M A. Clinical guide for audiologic tinnitus management I: Assessment.  Am J Audiol. 2005;  14 21-48
  • 58 Meikle M B. Methods for evaluation of tinnitus relief procedures. In: Aran J-M, Dauman R, eds. Proceedings IV International Tinnitus Seminar. Bordeaux. NY: Kugler Publications; 1991: 555-562
  • 59 Henry J A, Jastreboff M M, Jastreboff P J, Schechter M A, Fausti S A. Guide to conducting tinnitus retraining therapy initial and follow-up interviews.  J Rehabil Res Dev. 2003;  40 157-177
  • 60 Blakley B W, Gupta A K, Myers S F, Schwan S. Risk factors for ototoxicity due to cisplatin.  Arch Otolaryngol Head Neck Surg. 1994;  120 541-546
  • 61 Forge A, Schacht J. Aminoglycoside antibiotics.  Audiol Neurootol. 2000;  5 3-22
  • 62 Black F O, Pesznecker S C. Vestibular ototoxicity. Clinical considerations.  Otolaryngol Clin North Am. 1993;  26 713-736
  • 63 Hitchcock Y J, Tward J D, Szabo A, Bentz B G, Shrieve D C. Relative contributions of radiation and cisplatin-based chemotherapy to sensorineural hearing loss in head-and-neck cancer patients.  Int J Radiat Oncol Biol Phys. 2009;  73 779-788
  • 64 Paulino A C, Lobo M, Teh B S et al.. Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy in children with medulloblastoma.  Int J Radiat Oncol Biol Phys. 2010;  78 1445-1450
  • 65 Fausti S A, Helt W J, Gordon J S, Reavis K M, Phuillips D S, Konrad-Martin D L. Audiological monitoring for ototoxicity and patient management. In: Campbell K C, ed. Pharmacology and Ototoxicity for Audiologists. Clifton Park, NY: Thomson Delmar Learning; 2007: 230-251
  • 66 Carhart R, Jerger J. Preferred method for clinical determination of pure-tone thresholds.  J Speech Hear Disord. 1959;  24 330-345
  • 67 Burk M H, Wiley T L. Continuous versus pulsed tones in audiometry.  Am J Audiol. 2004;  13 54-61
  • 68 Mineau S M, Schlauch R S. Threshold measurement for patients with tinnitus: Pulsed or continuous tones.  Am J Audiol. 1997;  6 52-56
  • 69 Safirstein R, Daye M, Guttenplan J B. Mutagenic activity and identification of excreted platinum in human and rat urine and rat plasma after administration of cisplatin.  Cancer Lett. 1983;  18 329-338
  • 70 Aran J M. Current perspectives on inner ear toxicity.  Otolaryngol Head Neck Surg. 1995;  112 133-144
  • 71 Porter H L, Neely S T, Gorga M P. Using benefit-cost ratio to select Universal Newborn Hearing Screening test criteria.  Ear Hear. 2009;  30 447-457

Debra J WilmingtonPh.D. 

VA RR&D National Center for Rehabilitative Auditory Research (NCRAR)

3710 SW US Veterans Hospital Road, Portland, OR 97239

Email: Debra.wilmington@med.va.gov

    >