Klin Monbl Augenheilkd 2012; 229(04): 314-318
DOI: 10.1055/s-0031-1281857
Originalarbeit

Detection of Retinal Glial Cell Activation in Glaucoma by Time Domain Optical Coherence Tomography

Erkennung von aktivierten Gliazellen in der Netzhaut beim Glaukom mittels Time Domain optischer Kohärenztomografie
M. C. Grieshaber
1   Department of Ophthalmology, Glaucoma Service, University Hospital of Basel, Basel, Switzerland
,
F. Moramarco
1   Department of Ophthalmology, Glaucoma Service, University Hospital of Basel, Basel, Switzerland
,
A. Schoetzau
1   Department of Ophthalmology, Glaucoma Service, University Hospital of Basel, Basel, Switzerland
,
J. Flammer
1   Department of Ophthalmology, Glaucoma Service, University Hospital of Basel, Basel, Switzerland
,
S. Orguel
1   Department of Ophthalmology, Glaucoma Service, University Hospital of Basel, Basel, Switzerland
› Author Affiliations

Abstract

Background: Activated retinal astrocytes and Müller cells (ARAM) have been found in glaucoma patients. This study investigated whether presumed ARAM can be detected by optical coherence tomography (OCT), and assessed their relationship to the retinal nerve fiber layer (RNFL) thickness.

Patients and Methods: Single-center observational study involving 35 age-matched healthy controls and 19 patients with primary open-angle glaucoma (POAG) between 45 − 82 years of age. Presumed ARAM was defined as patchy, discrete glittering but transparent changes of the macula. The retina was documented by red-free photography to assess distribution of ARAM, and compared to the RNFL thickness measured around the fovea by OCT. A linear mixed effects model was used to detect a difference between eyes with ARAM versus eyes without ARAM.

Results: ARAM was not found in healthy subjects. The mean RNFL around the fovea was not significantly thicker in healthy controls (34.01 SD ± 22.24) than in POAG patients with ARAM (30.86 microns SD ± 15.09; p = 0.36) or without ARAM (33.19 microns SD ± 19.87; p = 0.46). Furthermore, the median RNFL thickness was similar to the control group (29 microns) but slightly thinner in POAG patients (each 27 microns with ARAM and without ARAM). In a subgroup analysis of POAG patients with ARAM, the within subject standard deviation of RNFL was significantly lower in areas with ARAM (SD 10.12) than in areas without ARAM (SD 17.30) (p < 0.001).

Conclusions: Although the mean and median RNFL thickness was comparable between the groups, the variability of the RNFL thickness was significantly lower in areas with ARAM than in areas without ARAM suggesting that ARAM may mask RNFL loss in POAG patients.

Zusammenfassung

Hintergrund: Aktivierte retinale Astrozyten und Müller-Zellen (ARAM) wurden bei Glaukompatienten beschrieben. Diese Studie ermittelte, ob ARAM mittels optischer Kohärenztomografie (OCT) erkannt werden können, und untersucht ihr Verhältnis zur retinalen Nervenfaserschicht(RNFS)-Dicke.

Patienten und Methoden: In dieser monozentrischen Beobachtungsstudie wurden 35 gesunde Probanden und 19 Patienten mit primärem Offenwinkelglaukom (POWG) im Alter zwischen 45 – 82 Jahren eingeschlossen. ARAM wurde als fleckige, diskret glänzende, aber transparente Veränderungen der Makula definiert. Die Netzhaut wurde fotografisch dokumentiert, um die Verteilung von ARAM zu untersuchen, und diese mit der RNFS-Dicke um die Fovea, im OCT gemessen, zu vergleichen. Ein lineares, gemischtes Modell wurde zur Erfassung von Unterschieden bei Augen mit und ohne ARAM eingesetzt.

Ergebnisse: ARAM wurde bei gesunden Probanden nicht gefunden. Die mittlere RNFS um die Fovea war nicht signifikant dicker bei gesunden Probanden (34,01 SD ± 22,24) als bei POWG-Patienten mit ARAM (30,86 Mikron SD ± 15,09; p = 0,36) oder ohne ARAM (33,19 Mikron SD ± 19,87; p = 0,46). Zudem war die mediane RNFS vergleichbar dick bei gesunden Probanden (29 Mikron) wie bei POWG-Patienten (je 27 Mikron mit ARAM und ohne ARAM). POWG-Patienten mit ARAM zeigten eine geringere Dickeschwankung an ortsspezifischen Arealen mit ARAM (SD 10,12) als an solchen ohne ARAM (SD 17,30) in einer Untergruppen-Auswertung (p < 0,001).

Schlussfolgerungen: Obwohl die mittlere und mediane RNFS-Dicke zwischen gesunden Probanden und POWG-Patienten vergleichbar waren, zeigte sich eine signifikant geringere Schwankung der RNFS-Dicke in Arealen mit ARAM als an solchen ohne ARAM, welche einen Verlust von RNFS bei POWG-Patienten verbergen könnte.

1 The first two authors have equally contributed to the study.




Publication History

Received: 15 September 2011

Accepted: 02 October 2011

Publication Date:
11 April 2012 (online)

© 2012. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Flammer J, Orgul S, Costa VP. et al. The impact of ocular blood flow in glaucoma. Progress in retinal and eye research 2002; 21: 359-593
  • 2 Quigley HA, Nickells RW, Kerrigan LA. et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774-786
  • 3 Wang L, Cioffi GA, Cull G. et al. Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci 2002; 43: 1088-1094
  • 4 Hernandez MR, Agapova OA, Yang P. et al. Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia 2002; 38: 45-64
  • 5 Wang X, Tay SS, Ng YK. An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Experimental brain research/Experimentelle Hirnforschung 2000; 132: 476-484
  • 6 Lam TT, Kwong JM, Tso MO. Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci 2003; 44: 638-645
  • 7 Grieshaber MC, Flammer J. Clinical signs of retinal glial cell activation in glaucoma patients. SE Eur J Ophthalmol 2006; 1 (01) 1-6
  • 8 Grieshaber MC, Orgul S, Schoetzau A. et al. Relationship between retinal glial cell activation in glaucoma and vascular dysregulation. J Glaucoma 2007; 16: 215-219
  • 9 Gugleta K, Orgul S, Hasler PW. et al. Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma. Invest Ophthalmol Vis Sci 2003; 44: 1573-1580
  • 10 Flammer J, Haefliger IO, Orgul S. et al. Vascular dysregulation: a principal risk factor for glaucomatous damage?. J Glaucoma 1999; 8: 212-219
  • 11 Hernandez MR, Pena JD. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol 1997; 115: 389-395
  • 12 Graf T, Flammer J, Prunte C. et al. Gliosis-like retinal alterations in glaucoma patients. J Glaucoma 1993; 2: 257-259
  • 13 Wang X, Tay SS, Ng YK. An electron microscopic study of neuronal degeneration and glial cell reaction in the retina of glaucomatous rats. Histol Histopathol 2002; 17: 1043-1052
  • 14 Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol 1980; 98: 1564-1571
  • 15 Zeimer R, Asrani S, Zou S. et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 1998; 105: 224-231
  • 16 Guedes V, Schuman JS, Hertzmark E. et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110: 177-189
  • 17 Zangwill LM, Bowd C, Berry CC. et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 2001; 119: 985-993
  • 18 Bowd C, Zangwill LM, Berry CC. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001; 42: 1993-2003
  • 19 Kanamori A, Nakamura M, Escano MF. et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003; 135: 513-520
  • 20 Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000; 25: 1439-1451
  • 21 Ueda H, Baba T, Terada N. et al. Immunolocalization of dystrobrevin in the astrocytic endfeet and endothelial cells in the rat cerebellum. Neurosci Lett 2000; 283: 121-124
  • 22 Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol 1998; 82: 862-870