Synlett 2011(13): 1875-1880  
DOI: 10.1055/s-0030-1260974
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of cis-4,5-Diarylazepanes

Meng-Yang Chang*, Nien-Chia Lee
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
Fax: +886(7)3125339; e-Mail: mychang@kmu.edu.tw;
Further Information

Publication History

Received 17 April 2011
Publication Date:
25 July 2011 (online)

Abstract

Substituted cis-4,5-diarylazepanes are synthesized in modest overall yields starting from 5,5-diarylazepan-4-ones by a ­reduction, mesylation, rearrangement, and hydrogenation reaction sequence.

    References and Notes

  • For reviews on the synthesis of azepane, see:
  • 1a Yet L. Chem. Rev.  2000,  100:  2963 
  • 1b Kantorowski EJ. Kurth MJ. Tetrahedron  2000,  56:  4317 
  • 1c Maier ME. Angew. Chem. Int. Ed.  2000,  39:  2073 
  • For syntheses of benzazepine, see:
  • 2a Qing L. Sasikumar TK. Bunett DA. Su J. Tang H. Ye Y. Mazzola RDJ. Zhu Z. McKittrick BA. Greenlee WJ. Fawzi A. Smith M. Zhang H. Lachowicz JE. Bioorg. Med. Chem. Lett.  2010,  20:  836 
  • 2b Zhang J. Chen X. Yu L. Zhen X. Zhang A. Bioorg. Med. Chem.  2008,  16:  9425 
  • 2c Shimada I. Maeno K. Kondoh Y. Kaku H. Sugasawa K. Kimura Y. Hatanaka K.-i. Naitou Y. Wanibuchi F. Sakamoto S. Tsukamoto S.-i. Bioorg. Med. Chem.  2008,  16:  3309 
  • 2d Bailey JM. Scott JS. Basilla JB. Bolton VJ. Boyfield I. Evans DG. Fleury E. Heightman TD. Jarvie EM. Lawless K. Matthews KL. MaKay F. Mok H. Muir A. Orlek BS. Sanger GJ. Stemp G. Stevens AJ. Thompson M. Ward J. Vaidya K. Westaway SM. Bioorg. Med. Chem. Lett.  2009,  19:  6452 
  • For syntheses of phenazepine, see:
  • 3a Diamond J. Bruce WF. Tyson FT. J. Med. Chem.  1964,  7:  57 
  • 3b Scheiner JJ. Richards DJ. Curr. Ther. Res. Clin. Exp.  1974,  16:  928 
  • 4a Jacobi PA. Lee KA. J. Am. Chem. Soc.  2000,  122:  4295 
  • 4b Boeckman RK. Clark TJ. Shook BC. Org. Lett.  2002,  4:  2109 
  • 4c Smith AB. Cho YS. Pettit GR. Hirschmann R. Tetrahedron  2003,  59:  6991 
  • 4d Painter GF. Eldridge PJ. Falshaw A. Bioorg. Med. Chem.  2004,  12:  225 
  • 4e Li H. Bleriot Y. Mallet JM. Rodriguez-Garcia E. Vogel P. Zhang Y. Sinay P. Tetrahedron: Asymmetry  2005,  16:  313 
  • 4f Wipf P. Spencer SR. J. Am. Chem. Soc.  2005,  127:  225 
  • 4g Li H. Bleriot Y. Chantereau C. Mallet J.-M. Sollogoub M. Zhang Y. Rodriguez-Garcia E. Vogel P. Jimenez-Barbero J. Sinay P. Org. Biomol. Chem.  2004,  2:  1492 
  • 5 Lee SJ. Beak P. J. Am. Chem. Soc.  2006,  128:  2178 
  • 6 Lyga JW. J. Heterocycl. Chem.  1996,  33:  1631 
  • 7 Lindstrom UM. Somfai P. J. Am. Chem. Soc.  1997,  119:  8385 
  • 8a Chang M.-Y. Kung Y.-H. Ma C.-C. Tetrahedron Lett.  2007,  48:  199 
  • 8b Chang M.-Y. Kung Y.-H. Wu T.-C. Tetrahedron  2007,  63:  3098 
  • 12a Mas M. Sola J. Solans X. Aguilo M. Inorg. Chim. Acta  1987,  133:  217 
  • 12b Almarzoqi B. George AV. Isaacs NS. Tetrahedron  1986,  42:  601 
  • 12c Rudine AB. Walter MG. Wamser CC. J. Org. Chem.  2010,  75:  4292 
  • 12d Munavalli S. Poziomek EJ. Landis WG. Heterocycles  1986,  24:  7 
  • 13 For a review on the synthesis of spiropiperidine, see: Dake G. Tetrahedron  2006,  62:  3467 
  • For a MnO2/TFA-mediated reaction, see:
  • 14a Wang K. Hu Y. Li Z. Wu M. Liu Z. Su B. Yu A. Liu Y. Wang Q. Synthesis  2010,  1083 
  • For a MCPBA/TFA-mediated reaction, see:
  • 14b Wang K. Hu Y. Wu M. Li Z. Liu Z. Su B. Yu A. Liu Y. Wang Q. Tetrahedron  2010,  66:  9135 
  • For a VOF3/TFA-mediated reaction, see:
  • 14c Niphakis MJ. Georg GI. Org. Lett.  2011,  13:  196 ; and references cited therein
  • 15a Zhang X. Jiang X. Zhang K. Mao L. Luo J. Chi C. Chan HSO. Wu J. J. Org. Chem.  2010,  75:  8069 
  • 15b Jiao C. Huang KW. Chi C. Wu J. J. Org. Chem.  2011,  76:  661 
9

Representative Procedure for Skeleton 5
BF3˙OEt2 (1.0 mmol) was added to a stirring solution of the skeleton 4 (0.5 mmol) in CH2Cl2 (10 mL) at r.t. The reaction mixture was stirred at reflux for 40 h. The total procedure was monitored by TLC until the reaction was completed.
A sat. NaHCO3 solution (1 mL) was added to the reaction mixture, and the solvent was concentrated under reduced pressure. The residue was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexane-EtOAc = 8:1 to 4:1) afforded skeleton 5.

10

CCDC 810260 (5b), 810167 (5e), 805710 (7b), and 817429 (8b) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].

11

Representative Procedure for Skeleton 7
Et3N (500 mg, 5.0 mmol), skeleton 2 (1.0 mmol), and CH2Cl2 (6 mL) were added to a sealed tube at r.t. The reaction mixture was stirred at reflux temperature for 25 h and then cooled to r.t. CH2Cl2 (10 mL) was added to the reaction mixture, and then HCl solution (1 N, 10 mL) was also added to the reaction mixture. The reaction mixture was extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried, filtered, and eva-porated to afford crude product. Purification on silica gel (hexane-EtOAc = 4:1 to 2:1) afforded skeleton 7.

16

Representative Procedure for Skeleton 8
Skeleton 5 (0.13 mmol) was dissolved in EtOAc (10 mL; free of oxygen) and was irradiated under a nitrogen atmosphere with a lamp (λ = 3060 Å), using a Pyrex glass filter at r.t. for 80 h. The solvent was evaporated to afford crude product. Purification on silica gel (hexane-EtOAc = 4:1 to 2:1) afforded skeleton 8.