Subscribe to RSS
DOI: 10.1055/s-0030-1260777
Synthesis of 3,4-Bis(benzylidene)cyclobutenes
Publication History
Publication Date:
10 June 2011 (online)

Abstract
The syntheses of several derivatives of 3,4-bis(benzylidene)cyclobutene are reported. Previously unknown 1,2-dibromo-3,4-bis(benzylidene)cyclobutene was obtained through in situ generation of 1,6-diphenyl-3,4-dibromo-1,2,4,5-tetraene followed by electrocyclic ring closure. Ensuing reduction and metal-catalyzed cross-coupling provided additional derivatives. The effects of ring strain on the geometry and electronics of these derivatives were examined by X-ray crystallography and ¹H NMR spectroscopy, respectively.
Key words
electrocyclic reactions - ring closure - allenes - highly strained ring systems - metal-catalyzed cross-coupling
- Supporting Information for this article is available online:
- Supporting Information
- 1
Blomquist AT.Maitlis PM. Proc. Chem. Soc. (London) 1961, 332 -
2a
Huntsman WD.Wristers HJ. J. Am. Chem. Soc. 1963, 85: 3308 -
2b
Huntsman WD.Wristers HJ. J. Am. Chem. Soc. 1965, 89: 342 -
2c
Coller BAW.Heffernan ML.Jones AJ. Aust. J. Chem. 1968, 21: 1807 -
2d
Hopf H. Angew. Chem., Int. Ed. Engl. 1970, 9: 732 - 3
Toda F.Garratt P. Chem. Rev. 1992, 92: 1685 - 4
Braverman S.Suresh Kumar EVK.Cherkinsky M.Sprecher M.Goldberg I. Tetrahedron 2005, 61: 3547 - For examples of the use of 2, see:
-
5a
Toda F.Akagi K.
J. Chem. Soc., Chem. Commun. 1970, 764 -
5b
Toda F.Akagi K. Tetrahedron 1971, 27: 2801 -
5c
Iyoda M.Kuwatami Y.Oda M. J. Am. Chem. Soc. 1989, 111: 3761 -
5d
Toda F.Tanaka K.Sano I.Isozaki T. Angew. Chem. 1994, 106: 1856 -
5e
Kuwatani Y.Yamamato G.Iyoda M. Org. Lett. 2003, 5: 3371 -
5f
Kuwatani Y.Yamamoto G.Oda M.Iyoda M. Bull. Chem. Soc. Jpn. 2003, 5: 2188 - 6
Toda F.Kumada K.Ishiguro N.Akagi K. Bull. Chem. Soc. Jpn. 1970, 43: 3535 - 7
Toda F. J. Chem. Soc., Chem. Commun. 1969, 1219 - 8
Brandsma L. Synthesis of Acetylenes, Allenes and Cumulenes Elsevier; Oxford: 2004. p.235-265 -
9a
Ulman A.Manassen J. J. Am. Chem. Soc. 1975, 97: 6540 -
9b
Smith CD.Tchabanenko K.Adlington RM.Baldwin JE. Tetrahedron Lett. 2006, 47: 3209 - 10
Landor SR.Demetriou B.Evans RJ.Grzeskowiak R.Devey P. J. Chem. Soc., Perkin Trans. 2 1972, 1995 - 11
Jacobs TL.Brill WF. J. Am. Chem. Soc. 1953, 75: 1314 -
12a
Kleveland K.Skattebøl L. J. Chem. Soc., Chem. Commun. 1973, 432 -
12b
Pasto DJ.Yang S.-H. J. Org. Chem. 1989, 54: 3544 - 14
Toda F.Tanaka K.Tamashima T.Kato M. Angew. Chem. Int. Ed. 1998, 37: 2724 - 15 The distribution of isomers was determined by ¹H NMR
- 18
Pasto DJ.Kong W. J. Org. Chem. 1989, 54: 4028 - 20
Roberts BW.Wissner A. J. Am. Chem Soc. 1972, 94: 7168 - For examples of this methodology in the synthesis of polycyclic aromatic compounds, see:
-
21a
Tovar JD.Swager TM. Adv. Mater. 2001, 13: 1775 -
21b
Tovar JD.Rose A.Swager TM. J. Am. Chem. Soc. 2002, 124: 7762
References and Notes
Dibromide 6 was found to rearrange to 5 (ca. 50%) and hydrolyze to 4 (ca. 50%) upon chromatography on silica gel and decomposed partially during recrystallization attempts.
16Photolysis experiments were conducted in hexane using a Hg pen-lamp, without the use of optical filters.
17Spartan B3LYP/6-31+g*, relative E (kcal/mol): 7 (in,out) = -0.4487, 7 (in,in) = 0, 7 (out,out) = 0.0056.
19Attempts to purify compound 8 via column chromatography or recrystallization were unsuccessful due to its limited stability. Any impurities visible in Figure S1 are believed to be primarily high-molecular-weight decomposition products.