Subscribe to RSS
DOI: 10.1055/s-0030-1260585
Direct Synthesis of α-Keto Esters from Ethylbenzenes Using 48% Aqueous HBr by Aerobic Visible Light Photooxidation
Publication History
Publication Date:
26 May 2011 (online)

Abstract
We report that ethylbenzenes can be directly oxidized to the corresponding α-keto esters with molecular oxygen in the presence of 48% aqueous HBr under visible light irradiation. This synthetic procedure is the first example for direct preparation of the corresponding α-keto esters from ethylbenzenes.
Key words
photooxidation - HBr - aerobic - ethylbenzene - α-keto ester
- 1a
Comprehensive Organic Transformations
2nd
ed.:
Larock RC. Wiley; New York: 1999. p.1625MissingFormLabel - 1b
March’s
Advanced Organic Chemistry
6th ed.:
Smith MB.March JA. John Wiley & Sons, Inc.; Hoboken: 2007. p.1745MissingFormLabel - 1c
Uyanik M.Fukatsu R.Ishihara K. Chem. Asian J. 2010, 5: 456MissingFormLabel - 2a
Kraus GA.Zhang N. J. Org. Chem. 2000, 65: 5644MissingFormLabel - 2b
Akiyama T.Suzuki M. Chem. Commun. 1997, 2357MissingFormLabel - 3a
Loupy A.Monteux DA. Tetrahedron 2002, 58: 1541MissingFormLabel - 3b
Tanaka K.Katsurada M.Ohno F.Shiga Y.Oda M. J. Org. Chem. 2000, 65: 432MissingFormLabel - 3c
Axten JM.Krim L.Kung HF.Winkler JD. J. Org. Chem. 1998, 63: 9628MissingFormLabel - 4a
Xiang J.Ming L.Bao L. Chin. Chem. Lett. 2009, 20: 55MissingFormLabel - 4b
Lee JI. J. Korean Chem. Soc. 2004, 48: 103MissingFormLabel - 4c
Maeda H.Hino N.Yamauchi Y.Ohmori H. Chem. Pharm. Bull. 2000, 48: 1196MissingFormLabel - 4d
Kashima C.Shirahata Y.Tsukamoto Y. Heterocycles 1998, 49: 459MissingFormLabel - 4e
Rambaud M.Bakasse M.Duguay G.Villieras J. Synthesis 1988, 564MissingFormLabel - 4f
Creary X. J. Org. Chem. 1987, 52: 5026MissingFormLabel - 4g
Itoh O.Nagata T.Nomura I.Takanaga T.Sugita T.Ichikawa K. Bull. Chem. Soc. Jpn. 1984, 57: 810MissingFormLabel - 4h
Weinstock LM.Currie RB.Lovell AV. Synth. Commun. 1981, 11: 943MissingFormLabel - 4i
Nimitz JS.Mosher HS. J. Org. Chem. 1981, 46: 211MissingFormLabel - 5a
Tatlock JH. J. Org. Chem. 1995, 60: 6221MissingFormLabel - 5b
Müller P.Godoy J. Tetrahedron Lett. 1982, 23: 3661MissingFormLabel - 6a
Li L.-S.Wu Y.-L. Tetrahedron Lett. 2002, 43: 2427MissingFormLabel - 6b
Nishinaga A.Maruyama K.Yoda K.Okamoto H.
J. Chem. Soc., Chem. Commun. 1990, 876MissingFormLabel - For recent examples, see:
- 7a
Johnston EV.Karlsson EA.Tran L.-H.Aakermark B.Baeckvall J.-E. Eur. J. Org. Chem. 2010, 1971MissingFormLabel - 7b
Yadav GD.Motirale BG. Chem. Eng. J. 2010, 156: 328MissingFormLabel - 7c
Park HJ.Lee JC. Synlett 2009, 79MissingFormLabel - 7d
Hosseinzadeh R.Tajbakhsh M.Khaledi H. J. Chin. Chem. Soc. 2008, 55: 239MissingFormLabel - 7e
Oba M.Okada Y.Nishiyama K.Shimada S.Ando W. Chem. Commun. 2008, 5378MissingFormLabel - 7f
Shei C.-T.Chien H.-L.Sung K. Synlett 2008, 1021MissingFormLabel - 7g
Pandey SK.Bisai A.Singh VK. Synth. Commun. 2007, 37: 4099MissingFormLabel - 7h
Demizu Y.Shiigi H.Oda T.Matsumura Y.Onomura O. Tetrahedron Lett. 2007, 49: 48MissingFormLabel - 7i
Lu N.Lin Y.-C. Tetrahedron Lett. 2007, 48: 8823MissingFormLabel - 8a
Wu X.Gorden AEV. Eur. J. Org. Chem. 2009, 503MissingFormLabel - 8b
Nakanishi M.Bolm C. Adv. Synth. Catal. 2007, 349: 861MissingFormLabel - 8c
Golchoubian H.Ghaziani ANK. Pol. J. Chem. 2005, 79: 825MissingFormLabel - 8d
Das S.Bhowmick T.Punniyamurthy T.Dey D.NaTh J.Chaudhuri MK. Tetrahedron Lett. 2003, 44: 4915MissingFormLabel - 8e
Wentzei BB.Donners MPJ.Alster PL.Feiters MC.Nolte RJM. Tetrahedron 2000, 56: 7797MissingFormLabel - 8f
Matsunaka K.Iwahama T.Sakaguchi S.Ishii Y. Tetrahedron Lett. 1999, 40: 2165MissingFormLabel - 8g
Zhao D.Lee DG. Synthesis 1994, 915MissingFormLabel - 8h
Choudary BM.Reddy GVS.Rao KK. J. Chem. Soc., Chem. Commun. 1993, 323MissingFormLabel - 8i
Wasserman HH.Ives JL. J. Org. Chem. 1985, 50: 3573MissingFormLabel - 9a
Kobayashi T.Yamashita H.Sakakura T.Tanaka M. J. Mol. Catal. 1987, 41: 379MissingFormLabel - 9b
Sakakura T.Yamashita H.Kobayashi T.Hayashi T.Tanaka M. J. Org. Chem. 1987, 52: 5733MissingFormLabel - 9c
Tanaka M.Kobayashi T.Sakakura T. J. Chem. Soc., Chem. Commun. 1985, 837MissingFormLabel - 9d
Ozawa F.Kawasaki N.Yamamoto T.Yamamoto A. Chem. Lett. 1985, 14: 567MissingFormLabel - 9e
Tanaka M.Kobayashi T.Sakakura T.Itatani H.Danno S.Zushi K. J. Mol. Catal. 1985, 32: 115MissingFormLabel - 10
Schaefer JP.Corey EJ. J. Org. Chem. 1959, 24: 1825 - 11
Zhuang J.Wang C.Xie F.Zhang W. Tetrahedron 2009, 65: 9797 - 12a
Izawa Y.Ishiguro K.Tomioka H. Bull. Chem. Soc. Jpn. 1983, 56: 1490MissingFormLabel - 12b
Izawa Y.Tomioka H.Natsume M.Beppu S.Tsujii H. J. Org. Chem. 1980, 45: 4835MissingFormLabel - 13a
Hirashima S.Nobuta T.Tada N.Miura T.Itoh A. Org. Lett. 2010, 12: 1620MissingFormLabel - 13b
Hirashima S.Itoh A. J. Synth. Org. Chem. Jpn. 2008, 66: 748MissingFormLabel - 13c
Hirashima S.Itoh A. Photochem. Photobiol. Sci. 2007, 6: 521MissingFormLabel - 13d
Sugai T.Itoh A. Tetrahedron Lett. 2007, 48: 9096MissingFormLabel - 13e
Hirashima S.Itoh A. Synthesis 2006, 1757MissingFormLabel - 13f
Itoh A.Hashimoto S.Kodama T.Masaki Y. Synlett 2005, 2107MissingFormLabel - 13g
Itoh A.Kodama S.Hashimoto S.Masaki Y. Synthesis 2003, 2289MissingFormLabel - 14
Tada N.Ban K.Hirashima S.Miura T.Itoh A. Org. Biomol. Chem. 2010, 8: 4701
References and Notes
When 48% aq HBr (1.2 equiv) and H2O (100 µL) were used as additive, ethylbenzene 1d was converted into α-bromo-acetophenone (3d) in 68% yield.¹4
16Typical Procedure: An anhyd EtOAc solution (5 mL) of ethylbenzenes (0.3 mmol) and 48% aq HBr (0.75 mmol) in a pyrex test tube equipped with an O2 balloon was stirred and irradiated with four 22-W fluorescent lamps, which were set up at a distance of 65 mm, for 20 h. The temperature of the final stage of this reaction was about 40 ˚C. The reaction mixture was concentrated under reduced pressure, and the pure product was obtained by purification with preparative TLC.