Subscribe to RSS
DOI: 10.1055/s-0030-1259958
N,N′-Carbonyldiimidazole-Mediated DBU-Catalyzed One-Pot Synthesis of Urea-Tethered Glycosyl Amino Acids and Glycoconjugates
Publication History
Publication Date:
18 April 2011 (online)

Abstract
An efficient, mild, simple, and alternative one-pot protocol for the synthesis of urea-tethered glycosyl amino acids mediated by N,N′-carbonyldiimidazole employing DBU as a catalyst is described. This protocol is also extended for the synthesis of urea-tethered disaccharides and oligosaccharides.
Key words
urea-tethered glycoconjugates - N,N′-carbonyldiimidazole - DBU - base catalysis
- 1
Varki A. Glycobiology 1993, 3: 97 - 2a
Dwek RA. Chem. Rev. 1996, 96: 683Reference Ris Wihthout Link - 2b
Selvador LA.Eloffson M.Kihlberg J. Tetrahedron 1995, 51: 5643Reference Ris Wihthout Link - 2c
Taylor CM. Tetrahedron 1998, 54: 11317Reference Ris Wihthout Link - 2d
Davis BG. Chem. Rev. 2002, 102: 579Reference Ris Wihthout Link - 3
Kunz H. Angew. Chem., Int. Ed. Engl. 1987, 26: 294 - 4
Marcaurelle LA.Bertozzi CR. Chem. Eur. J. 1999, 5: 1384 - 5a
Cassarco MR.Brown RT. J. Org. Chem. 2003, 68: 8853Reference Ris Wihthout Link - 5b
McDonald FE.Danishefsky SJ. J. Org. Chem. 1992, 57: 7001Reference Ris Wihthout Link - 5c
Khorlin AY.Zurabyan SE.Macharadze RG. Carbohydr. Res. 1980, 85: 201Reference Ris Wihthout Link - 5d
Gustafson GL.Gander JE. Methods Enzymol. 1984, 107: 172Reference Ris Wihthout Link - 5e
Kuijpers BHM.Groothuys S.Keereweer A.Quaedflieg PJLM.Blaauw RH.Delft FLV.Rutjes FPJT. Org. Lett. 2004, 6: 3123Reference Ris Wihthout Link - 5f
Synthesis of Peptides
and Peptidomimetics (Houben-Weyl)
Vol. E22c:
Goodman M.Felix A.Moroder L.Toniolo C. Thieme; Stuttgart: 2003.Reference Ris Wihthout Link - 5g
Cho CY.Youngquist RS.Paikoff SJ.Beresini MH.Hebert AR.Berleau LT.Liu CW.Wemmer DE.Keough T.Schultz PG.
J. Am. Chem. Soc. 1998, 120: 7706Reference Ris Wihthout Link - 6a
Choi KH.Hamilton AD. Coord. Chem. Rev. 2003, 240: 101Reference Ris Wihthout Link - 6b
Castellano RK.Nuckolls C.Rebek J.
J. Am. Chem. Soc. 1999, 121: 11156Reference Ris Wihthout Link - 6c
Cho YL.Rudkevich DM.Shivanyuk A.Rissanen K.Rebek J. Chem. Eur. J. 2000, 6: 3788Reference Ris Wihthout Link - 7a
Avalos M.Babiano R.Cintas P.Jimenez J.Palacios JC.Valencia C. Tetrahedron 1993, 49: 2655Reference Ris Wihthout Link - 7b
Avalos M.Babiano R.Cintas P.Jimenez J.Palacios JC.Valencia C. Tetrahedron 1993, 49: 2676Reference Ris Wihthout Link - 7c
Maya I.Lopez O.Maza S.Fernandez-Bolanos JG.Fuentes J. Tetrahedron Lett. 2003, 44: 8539Reference Ris Wihthout Link - 8
Nishiyama T.Ichikawa Y.Isobe M. Synlett 2003, 47 - 9
Park NH.Nguyen HM. Org. Lett. 2009, 11: 2433 - 10a
Kovacs J.Pinter I.Messmer A.Toth G.Duddek H. Carbohydr. Res. 1987, 166: 101Reference Ris Wihthout Link - 10b
Diaz VM.Ortiz C.Fuentes J.Garcia JM. Carbohydr. Res. 1987, 166: 161Reference Ris Wihthout Link - 11
Ichikawa Y.Nishiyama T.Isobe M. Synlett 2000, 1253 - 12a
Ichikawa Y.Matsukawa Y.Nishiyama T.Isobe M. Eur. J. Org. Chem. 2004, 69: 586Reference Ris Wihthout Link - 12b
Ichikawa Y.Nishiyama T.Isobe M. J. Org. Chem. 2001, 66: 4200Reference Ris Wihthout Link - 12c
Ukita C.Hamada A.Yoshida M. Chem. Pharm. Bull. 1964, 12: 454Reference Ris Wihthout Link - 12d
Fischer E. Ber. Dtsch. Chem. Ges. 1914, 47: 1377Reference Ris Wihthout Link - 12e
Johnson TB.Bergmann W. J. Am. Chem. Soc. 1932, 54: 3360Reference Ris Wihthout Link - 12f
Bannister B. J. Antibiot. 1972, 25: 377Reference Ris Wihthout Link - 12g
Pinter I.Kovacs J.Toth G. Carbohydr. Res. 1995, 273: 99Reference Ris Wihthout Link - 13a
Shioiri T.Ninomiya K.Yamada S. J. Am. Chem. Soc. 1972, 94: 6203Reference Ris Wihthout Link - 13b
Sawada D.Sasayama S.Takahashi H.Ikegami S. Tetrahedron Lett. 2006, 47: 7219Reference Ris Wihthout Link - 14a
Dolle RE. J. Comb. Chem. 2001, 3: 477Reference Ris Wihthout Link - 14b
Dolle RE. J. Comb. Chem. 2000, 2: 383Reference Ris Wihthout Link - 15a
Hemantha HP.Chennakrishnareddy G.Vishwanatha TM.Sureshbabu VV. Synlett 2009, 407Reference Ris Wihthout Link - 15b
Sureshbabu VV.Chennakrishnareddy G.Hemantha HP. Synlett 2010, 715Reference Ris Wihthout Link - 16a
Sharma RK. Synlett 2007, 3073 ; and references cited thereinReference Ris Wihthout Link - 16b
Zang X.Rodrigues J.Evans L.Hinkle B.Ballantyne L.Pena M. J. Org. Chem. 1997, 62: 6420Reference Ris Wihthout Link - 16c
Fustero S.Torre MG.Sanz-Cervera JF.Arellano CR.Piera J.Simn A. Org. Lett. 2002, 4. 3651Reference Ris Wihthout Link - 16d
Figueiredo RM.Fröhlich R.Christmann M. J. Org. Chem. 2006, 71: 4147Reference Ris Wihthout Link - 16e
Weber AL. Orig. Life Evol. Biosph. 2005, 35: 421Reference Ris Wihthout Link - 16f
Dawson PE.Muir TW.Clark-Lewis I.Kent SBH. Science 1994, 266: 776Reference Ris Wihthout Link - 16g
Dubé P.Fine Nathel NF.Vetelino M.Couturier M.Aboussafy CL.Pichette S.Jorgensen ML.Hardink M. Org. Lett. 2009, 11: 5622Reference Ris Wihthout Link - 16h
Opatz T.Kallus C.Wunberg T.Kunz H. Tetrahedron 2004, 60: 8613Reference Ris Wihthout Link - 16i
Ford MJ.Ley SV. Synlett 1990, 255Reference Ris Wihthout Link - 17
Oakenfull DG.Salvesen K.Jencks WP. J. Am. Chem. Soc. 1971, 93: 188 - 18
Larrivee-Aboussafy C.Jones BP.Price KE.Hardink MA.McLaughlin RW.Lillie BM.Hawkins JM.Vaidyanathan R. Org. Lett. 2010, 12: 324 - 19
Dobashi K.Nagaoka K.Watanabe Y.Nishida M.Hamada M.Takeuchi T.Umezawa H. J. Antibiot. 1985, 1166
References and Notes
The epimerization study was carried
out by ¹H NMR and HPLC analyses of the glycosyl
ureas 3k and 3l synthesized by
the protocol described below.
Glucosamine (2a),was
converted into two epimeric glycosyl ureas 3k and 3l as outlined in Scheme
[³]
by coupling separately
with l-Ala-OMe (1k)
and d-Ala-OMe (1l), respectively.
An equimolar mixture of these two epimers was obtained by coupling
with the racemic mixture of l- and d-Ala-OMe. The ¹H NMR
spectrum of 3k and 3l contained distinct
methyl group doublets at δ = 1.52, 1.54 ppm and δ = 1.55,
1.58 ppm, respectively; whereas the epimeric mixture showed CH3 group
signals at δ = 1.51, 1.54 ppm and δ = 1.56,
1.59 ppm corresponding to two doublets. Additionally, HPLC analysis
of the pure l- and d-Ala-OMe-derived glycosyl
ureas 3k and 3l showed
single peaks at different
t
R values
i.e., t
R = 9.23
and t
R = 9.61
(method: gradient 0.1% TFA H2O-MeCN;
MeCN 30-100% in 30 min), respectively.
General Procedure
for the Preparation of 3a-f
To a suspension
of N,N′-carbonyldiimidazole
(1.2 mmol) in anhydrous CH2Cl2 (10 mL) was
added amino acid ester (1.0 mmol) and DBU (0.2 mmol), and the reaction
mixture was stirred at ambient temperature for 6-7 min.
The glycosyl amine (1.0 mmol) and DBU (0.3 mmol) was then added
at 0 ˚C, and the resulting mixture was stirred
for about 3 h at 0 ˚C. After completion of the
reaction, the resulting solution was diluted with CH2Cl2 (10
mL) and washed with citric acid (2 × 10
mL), H2O (2 × 10 mL), and
brine (10 mL). The organic layer was dried over anhyd Na2SO4,
filtered, and evaporated to obtain the crude product. Pure urea-tethered glycoconjugate
was obtained as a solid on column chromatography eluting with EtOAc-hexane
(4:6).
The procedure followed for the synthesis of 3g-j is
similar to that described above with the only difference being the use
of 0.6 mmol DBU during the addition of the second amine component.
Spectroscopic Data for Compound 3a
White
solid. IR (KBr): νmax = 3385,
1748, 1655, 1560, 1231 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 2.00 (s,
3 H), 2.03 (s, 3 H), 2.05 (s, 3 H), 2.07 (s, 3 H), 3.06 (d, 2 H),
3.69 (s, 3 H), 3.77 (ddd, J = 10.0,
4.3, 2.1 Hz, 1 H), 4.10 (dd, J = 12.3,
1.8 Hz, 1 H), 4.29 (dd, J = 12.3,
4.6 Hz, 1 H), 4.71 (q, J = 7.0 Hz,
6.0 Hz, 1 H), 4.88 (t, J = 9.6
Hz, 1 H), 5.10 (t, J = 9.4
Hz, 1 H), 5.15 (t, J = 9.3
Hz, 1 H), 5.12-5.22 (br, 1 H), 5.33 (d, J = 9.6
Hz, 1 H), 5.40-5.53 (br, 1 H), 7.04-7.16 (m, 2
H), 7.22- 7.35 (m, 3 H) ppm. ¹³C
NMR (75 MHz, CDCl3): δ = 21.0, 21.2,
38.0, 53.1, 54.5, 62.6, 69.5, 70.2, 73.2, 74.3, 81.6, 128.4, 129.1,
130.3, 136.8, 156.5, 169.8, 170.1, 171.0, 171.6, 173.8 ppm.
Spectroscopic Data for Compound 3h
White
solid. IR (KBr): νmax = 1669,
1558, 1229 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 1.31 (s, 3 H),
1.49 (s, 3 H), 2.00 (s, 3 H), 2.02 (s, 3 H), 2.06 (s, 3 H), 2.09
(s, 3 H), 2.14 (s, 3 H), 3.32 (dd, J = 14.6,
5.8 Hz, 1 H), 3.41 (s, 3 H), 3.52 (ddd, J = 15.0,
5.8, 2.6 Hz, 1 H), 3.78 (ddd, J = 10.8,
5.6, 2.4 Hz, 1 H), 3.86 (ddd, J = 10.0,
4.2, 2.2 Hz, 1 H), 4.18 (dd, J = 12.6,
2.0 Hz, 1 H), 4.20 (d, J = 5.8
Hz, 1 H), 4.24 (dd, J = 7.6,
5.5 Hz, 1 H), 4.35 (dd, J = 12.6,
4.0 Hz, 1 H), 4.90 (dd, J = 10.5,
7.5 Hz, 1 H), 4.93 (t, J = 9.5
Hz, 1 H), 4.97 (s, 1 H), 5.12 (t, J = 6.0
Hz, 1 H), 5.15 (t, J = 9.7
Hz, 1 H), 5.19 (t, J = 9.4
Hz, 1 H), 5.36 (t, J = 9.4
Hz, 1 H), 5.47 (br d, J = 9.5
Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 20.9,
21.5, 21.9, 26.8, 27.9, 42.4, 57.3, 63.9, 68.6, 70.5, 72.1, 73.3,
75.8, 76.7, 77.9, 82.1, 99.6, 110.8, 158.2, 170.4, 170.9, 172.0,
173.9, 174.5 ppm.