Subscribe to RSS
DOI: 10.1055/s-0030-1259946
Space Integration of Reactions: An Approach to Increase the Capability of Organic Synthesis
Publication History
Publication Date:
07 April 2011 (online)

Abstract
This article provides a brief outline of the concept of reaction integration in flow systems and some examples. The use of flow microreactors enables space integration of multiple reactions, especially those involving highly reactive short-lived reactive intermediates to enhance the power and speed of organic synthesis.
Key words
flow microreactor - step-by-step synthesis - space integration of reactions
- 1
Wender PA.Verma VA.Paxton TJ.Pillow TH. Acc. Chem. Res. 2008, 41: 40 - 3
Tietze LF. Chem. Rev. 1996, 96: 115 - 4a
Ryu I.Sonoda N. Chem. Rev. 1996, 96: 177Reference Ris Wihthout Link - 4b
Parsons PJ.Penkett CS.Shell AJ. Chem. Rev. 1996, 96: 195Reference Ris Wihthout Link - 4c
Louie J.Bielawski CW.Grubbs RH. J. Am. Chem. Soc. 2001, 123: 11312Reference Ris Wihthout Link - 5
Enders D.Hüttl MRM.Grondal C.Raabe G. Nature (London) 2006, 441: 861 - 6a
Babu G.Orita A.Otera J. Chem. Lett. 2008, 37: 1296Reference Ris Wihthout Link - 6b
Shimizu M.Shimono K.Hiyama T. Chem. Lett. 2006, 35: 838Reference Ris Wihthout Link - 6c
Fuwa H.Tako T.Ebine M.Sasaki M. Chem. Lett. 2008, 37: 904Reference Ris Wihthout Link - 6d
Ikeda S.Shibuya M.Kanoh N.Iwabuchi Y. Chem. Lett. 2008, 37: 962Reference Ris Wihthout Link - 6e
Cernak TA.Lambert TH. J. Am. Chem. Soc. 2009, 131: 3124Reference Ris Wihthout Link - 6f
Hardee DJ.Lambert TH. J. Am. Chem. Soc. 2009, 131: 7536Reference Ris Wihthout Link - 8a
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168Reference Ris Wihthout Link - 8b
Bienaymé H.Hulme C.Oddon O.Schmitt P. Chem. Eur. J. 2000, 6: 3321Reference Ris Wihthout Link - 8c
Balme G.Bossharth E.Monteiro N. Eur. J. Org. Chem. 2003, 4101Reference Ris Wihthout Link - 8d
Stacy W.Orga MG. J. Comb. Chem. 2007, 9: 14Reference Ris Wihthout Link - 9
Ugi I. Pure Appl. Chem. 2001, 73: 187 - 10a
Orita A.Yaruva J.Otera J. Angew. Chem. Int. Ed. 1999, 38: 2267Reference Ris Wihthout Link - 10b
Orita A.Yoshioka N.Struwe P.Braier A.Beckmann A.Otera J. Chem. Eur. J. 1999, 5: 1355Reference Ris Wihthout Link - 10c
Clarke PA.Santos S.Martin WHC. Green Chem. 2007, 9: 438Reference Ris Wihthout Link - 10d
Nokami T.Tsuyama H.Shibuya A.Nakatsutsumi T.Yoshida J. Chem. Lett. 2008, 37: 942Reference Ris Wihthout Link - 10e
Numata Y.Kawashima J.Hara T.Tajima Y. Chem. Lett. 2008, 37: 1018Reference Ris Wihthout Link - 10f
Yamaguchi K.Kotani M.Kamata K.Mizuno N. Chem. Lett. 2008, 37: 1258Reference Ris Wihthout Link - Multicatalytic processes:
- 11a
Ajamian A.Gleason JL. Angew. Chem. Int. Ed. 2004, 43: 3754Reference Ris Wihthout Link - 11b
Fogg DE.dos Santos EN. Coord. Chem. Rev. 2004, 248: 2365Reference Ris Wihthout Link - 11c
De Meijere A.von Zezschwitz P.Bräse S. Acc. Chem. Res. 2005, 38: 413Reference Ris Wihthout Link - 11d
Wasilke JC.Obrey SJ.Baker RT.Bazan GC. Chem. Rev. 2005, 105: 1001Reference Ris Wihthout Link - 11e
Schmidt B. Pure Appl. Chem. 2006, 78: 469Reference Ris Wihthout Link - Some recent reviews:
- 12a
Fletcher PDI.Haswell SJ.Pombo-Villar E.Warrington BH.Watts P.Wong SYF.Zhang X. Tetrahedron 2002, 58: 4735Reference Ris Wihthout Link - 12b
Jas G.Kirschning A. Chem. Eur. J. 2003, 9: 5708Reference Ris Wihthout Link - 12c
Jähnisch K.Hessel V.Löwe H.Baerns M. Angew. Chem. Int. Ed. 2004, 43: 406Reference Ris Wihthout Link - 12d
Kiwi-Minsker L.Renken A. Catal. Today 2005, 110: 2Reference Ris Wihthout Link - 12e
Doku GN.Verboom W.Reinhoudt DN.van den Berg A. Tetrahedron 2005, 61: 2733Reference Ris Wihthout Link - 12f
Watts P.Haswell SJ. Chem. Soc. Rev. 2005, 34: 235Reference Ris Wihthout Link - 12g
Yoshida J.Nagaki A.Iwasaki T.Suga S. Chem. Eng. Tech. 2005, 3: 259Reference Ris Wihthout Link - 12h
Geyer K.Codée JDC.Seeberger PH. Chem. Eur. J. 2006, 12: 8434Reference Ris Wihthout Link - 12i
Whitesides G. Nature (London) 2006, 442: 368Reference Ris Wihthout Link - 12j
deMello AJ. Nature (London) 2006, 442: 394Reference Ris Wihthout Link - 12k
Song H.Chen DL.Ismagilov RF. Angew. Chem. Int. Ed. 2006, 45: 7336Reference Ris Wihthout Link - 12l
Kobayashi J.Mori Y.Kobayashi S. Chem. Asian J. 2006, 1: 22Reference Ris Wihthout Link - 12m
Brivio M.Verboom W.Reinhoudt DN. Lab Chip 2006, 6: 329Reference Ris Wihthout Link - 12n
Kobayashi J.Mori Y.Kobayashi S. Chem. Asian J. 2006, 1: 22Reference Ris Wihthout Link - 12o
Mason BP.Price KE.Steinbacher JL.Bogdan AR.McQuade DT. Chem. Rev. 2007, 107: 2300Reference Ris Wihthout Link - 12p
Ahmed-Omer B.Brandtand JC.Wirth T. Org. Biomol. Chem. 2007, 5: 733Reference Ris Wihthout Link - 12q
Smith CD.Baxendale IR.Lanners S.Hayward JJ.Smith SC.Ley SV. Org. Biomol. Chem. 2007, 5: 1559Reference Ris Wihthout Link - 12r
Sahoo HR.Kralj JG.Jensen KF. Angew. Chem. Int. Ed. 2007, 46: 5704Reference Ris Wihthout Link - 12s
Fukuyama T.Rahman MT.Sato M.Ryu I. Synlett 2008, 151Reference Ris Wihthout Link - 12t
Yoshida J.Nagaki A.Yamada T. Chem. Eur. J. 2008, 14: 7450Reference Ris Wihthout Link - 12u
Shore G.Morin S.Mallik D.Organ MG. Chem. Eur. J. 2008, 14: 1351Reference Ris Wihthout Link - 12v
Lin W.-Y.Wang Y.Wang S.Tseng H.-R. Nano Today 2009, 4: 470Reference Ris Wihthout Link - 12w
McMullen JP.Jensen KF. Annu. Rev. Anal. Chem. 2010, 3: 19Reference Ris Wihthout Link - 12x
Yoshida J. Chem. Rec. 2010, 10: 332Reference Ris Wihthout Link - 12y
Yoshida J.Kim H.Nagaki A. ChemSusChem 2011, 4: 331Reference Ris Wihthout Link - 16a
Shono T.Hamaguchi H.Matsumura Y. J. Am. Chem. Soc. 1975, 97: 4264Reference Ris Wihthout Link - 16b
Shono T.Matsumura Y.Tsubata K. Org. Synth. 1985, 63: 206Reference Ris Wihthout Link - The oxidative methoxylation of amides has also been reported:
- 16c
Ross S.Finkelstein D.Peterson RC. J. Am. Chem. Soc. 1966, 88: 4657Reference Ris Wihthout Link - 16d
Nyberg K.Servin R. Acta Chem. Scand., Ser. B 1976, 30: 640Reference Ris Wihthout Link - 16e
Moeller KD. Tetrahedron 2000, 56: 9527Reference Ris Wihthout Link - 17a
Yoshida J.Suga S.Suzuki S.Kinomura N.Yamamoto A.Fujiwara K. J. Am. Chem. Soc. 1999, 121: 9546Reference Ris Wihthout Link - 17b
Suga S.Okajima M.Yoshida J. Tetrahedron Lett. 2001, 42: 2173Reference Ris Wihthout Link - 17c
Suga S.Suzuki S.Yoshida J.
J. Am. Chem. Soc. 2002, 124: 30Reference Ris Wihthout Link - 17d
Suga S.Watanabe M.Yoshida J. J. Am. Chem. Soc. 2002, 124: 14824Reference Ris Wihthout Link - 17e
Suga S.Nagaki A.Yoshida J. Chem. Commun. 2003, 354Reference Ris Wihthout Link - 17f
Suga S.Nagaki A.Tsutsui Y.Yoshida J. Org. Lett. 2003, 5: 945Reference Ris Wihthout Link - 17g
Suga S.Kageyama Y.Babu G.Itami K.Yoshida J. Org. Lett. 2004, 6: 2709Reference Ris Wihthout Link - 17h
Suga S.Suzuki S.Maruyama T.Yoshida J. Bull. Chem. Soc. Jpn. 2004, 77: 1545Reference Ris Wihthout Link - 17i
Nagaki A.Kawamura K.Suga S.Ando T.Sawamoto M.Yoshida J. J. Am. Chem. Soc. 2004, 126: 14702Reference Ris Wihthout Link - 17j
Suga S.Tsutsui Y.Nagaki A.Yoshida J. Bull. Chem. Soc. Jpn. 2005, 78: 1206Reference Ris Wihthout Link - 17k
Maruyama T.Suga S.Yoshida J. J. Am. Chem. Soc. 2005, 127: 7324Reference Ris Wihthout Link - 17l
Nagaki A.Togai M.Suga S.Aoki N.Mae K.Yoshida J. J. Am. Chem. Soc. 2005, 127: 11666Reference Ris Wihthout Link - 17m
Maruyama T.Suga S.Yoshida J. Tetrahedron 2006, 62: 6519Reference Ris Wihthout Link - 17n
Suga S.Watanabe M.Song C.-H.Yoshida J. Electrochemistry 2006, 74: 672Reference Ris Wihthout Link - 17o
Maruyama T.Mizuno Y.Shimizu I.Suga S.Yoshida J. J. Am. Chem. Soc. 2007, 129: 1902Reference Ris Wihthout Link - 17p
Suga S.Shimizu I.Ashikari Y.Mizuno Y.Maruyama T.Yoshida J. Chem. Lett. 2008, 37: 1008Reference Ris Wihthout Link - 17q
Okajima M.Soga K.Nokami T.Suga S.Yoshida J. Org. Lett. 2006, 8: 5005Reference Ris Wihthout Link - 17r
Nokami T.Ohata K.Inoue M.Tsuyama H.Shibuya A.Soga K.Okajima M.Suga S.Yoshida J.
J. Am. Chem. Soc. 2008, 130: 10864Reference Ris Wihthout Link - 17s
Nagaki A.Iwasaki T.Kawamura K.Yamada D.Suga S.Ando T.Sawamoto M.Yoshida J. Chem. Asian J. 2008, 3: 1558Reference Ris Wihthout Link - 17t
Okajima M.Soga K.Watanabe T.Terao K.Nokami T.Suga S.Yoshida J. Bull. Chem. Soc. Jpn. 2009, 82: 594Reference Ris Wihthout Link - 18
Suga S.Okajima M.Fujiwara K.Yoshida J. J. Am. Chem. Soc. 2001, 123: 7941 - 19
Suga S.Nishida T.Yamada D.Nagaki A.Yoshida J. J. Am. Chem. Soc. 2004, 126: 14338 - 20
Suga S.Yamada D.Yoshida J. Chem. Lett. 2010, 39: 404 - Some recent examples:
- 21a
Nagaki A.Tomida Y.Yoshida J. Macromolecules 2008, 41: 6322Reference Ris Wihthout Link - 21b
Nagaki A.Takabayashi N.Tomida Y.Yoshida J. Org. Lett. 2008, 10: 3937Reference Ris Wihthout Link - 21c
Nagaki A.Kim H.Yoshida J. Angew. Chem. Int. Ed. 2008, 47: 7833Reference Ris Wihthout Link - 21d
Nagaki A.Takizawa E.Yoshida J. Chem. Lett. 2009, 38: 486Reference Ris Wihthout Link - 21e
Nagaki A.Takabayashi N.Tomida Y.Yoshida J. Beilstein J. Org. Chem. 2009, 5: No. 16Reference Ris Wihthout Link - 21f
Nagaki A.Takizawa E.Yoshida J. J. Am. Chem. Soc. 2009, 131: 1654Reference Ris Wihthout Link - 21g
Tomida Y.Nagaki A.Yoshida J. Org. Lett. 2009, 11: 3614Reference Ris Wihthout Link - 21h
Nagaki A.Kim H.Yoshida J. Angew. Chem. Int. Ed. 2009, 48: 8063Reference Ris Wihthout Link - 21i
Nagaki A.Tomida Y.Miyazaki A.Yoshida J. Macromolecules 2009, 42: 4384Reference Ris Wihthout Link - 21j
Nagaki A.Takizawa E.Yoshida J. Chem. Lett. 2009, 38: 1060Reference Ris Wihthout Link - 21k
Nagaki A.Kim H.Matsuo C.Yoshida J. Org. Biomol. Chem. 2010, 8: 1212Reference Ris Wihthout Link - 21l
Nagaki A.Miyazaki A.Yoshida J. Macromolecules 2010, 43: 8424Reference Ris Wihthout Link - 21m
Nagaki A.Kim H.Moriwaki Y.Matsuo C.Yoshida J. Chem. Eur. J. 2010, 16: 11167Reference Ris Wihthout Link - 21n
Nagaki A.Miyazaki A.Tomida Y.Yoshida J. Chem. Eng. J. 2011, 167: 548Reference Ris Wihthout Link - 22a
Usutani H.Tomida Y.Nagaki A.Okamoto H.Nokami T.Yoshida J. J. Am. Chem. Soc. 2007, 129: 3047Reference Ris Wihthout Link - 22b
Nagaki A.Tomida Y.Usutani H.Kim H.Takabayashi N.Nokami T.Okamoto H.Yoshida J. Chem. Asian J. 2007, 2: 1513Reference Ris Wihthout Link - 23
Ushiogi Y.Hase T.Iinuma Y.Takata A.Yoshida J. Chem. Commun. 2007, 2947 - 24
Murahashi S.Yamamura M.Yanagisawa K.Mita N.Kondo K. J. Org. Chem. 1979, 44: 2408 - 25
Nagaki A.Kenmoku A.Moriwaki Y.Hayashi A.Yoshida J. Angew. Chem. Int. Ed. 2010, 49: 7543Reference Ris Wihthout Link - 26a
Baumann M.Baxendale IR.Ley SV. Synlett 2008, 2111Reference Ris Wihthout Link - 26b
Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD.Tierney JP. Org. Biomol. Chem. 2008, 6: 1577Reference Ris Wihthout Link - 26c
Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD. Org. Biomol. Chem. 2008, 6: 1587Reference Ris Wihthout Link - 26d
Palmieri A.Ley SV.Polyzos A.Ladlow M.Baxendale IR. Beilstein J. Org. Chem. 2009, 5: No. 23Reference Ris Wihthout Link - 26e
Sedelmeier J.Ley SV.Baxendale IR. Green Chem. 2009, 11: 683Reference Ris Wihthout Link - 26f
Baxendale IR.Ley SV.Mansfield AC.Smith CD. Angew. Chem. Int. Ed. 2009, 48: 4017Reference Ris Wihthout Link - 26g
Palmieri A.Ley SV.Hammond K.Polyzos A.Baxendale IR. Tetrahedron Lett. 2009, 50: 3287Reference Ris Wihthout Link - 26h
Baumann M.Baxendale IR.Martin LJ.Ley SV. Tetrahedron 2009, 65: 6611Reference Ris Wihthout Link - 26i
Hartman RL.Jensen KF. Lab Chip 2009, 9: 2495Reference Ris Wihthout Link - 26j
Webb D.Jamison TF. Chem. Sci. 2010, 1: 675Reference Ris Wihthout Link - 26k
Venturoni F.Nikbin N.Ley SV.Baxendale IR. Org. Biomol. Chem. 2010, 8: 1798Reference Ris Wihthout Link - 26l
Carter CF.Baxendale IR.Pavey JB.Ley SV. Org. Biomol. Chem. 2010, 8: 1588Reference Ris Wihthout Link - 26m
Baxendale IR.Schou SC.Sedelmeier J.Ley SV. Chem. Eur. J. 2010, 16: 89Reference Ris Wihthout Link - 26n
Carter FC.Baxendale IR.O’Brien M.Pavey JB.Ley SV. Org. Biomol. Chem. 2009, 7: 4594Reference Ris Wihthout Link
References and Notes
A project of ‘Organic Synthesis based on Reaction Integration. Development of New Methods and Creation of New Substances’ supported by Grant-in-Aid for Scientific Research on Innovative Areas, The Ministry of Education, Culture, Sports, Science, and Technology, Japan, started in 2009.
7Multicomponent(coupling) reactions are reactions that convert more than two components directly into their products in a single reactor. Therefore, they can be also carried out in one-pot sequential way.
13Integrated chemical synthesizer was proposed by Bard in 1994. See: Bard, A. J. Integrated Chemical Systems; Wiley: New York, 1994.
14The name of domino reaction was derived
from the game where one puts up several domino pieces in one row
and in agreement with the time-resolved succession of reactions,
if
one knocks over the first domino, all the others follow without
changing the conditions. However, we should keep in mind that all
the molecules in a reaction vessel do not start the domino at once.
It is difficult to activate all reactant molecules coherently. The
molecules are activated indivi-dually and participate in the reaction
(and also domino sequence) at different times. Therefore, all the
reactions in the sequence take place simultaneously from a macroscopic point
of view. Therefore, reaction times (time required for converting
most of the reactant molecules) often range from minutes to hours,
although the time required for the reaction for a single molecule
is several hundred femtoseconds to picoseconds.
Life times of radical intermediates are usually much shorter than millisecond. Therefore, space integration of radical reactions is practically impossible at present, although there are many examples of time and space integration of radical reactions.