References and Notes
<A NAME="RY02410ST-1A">1a</A>
Modern
Aldol Reactions
Vol. 1:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RY02410ST-1B">1b</A> For metal-catalyzed reactions,
see: Modern Aldol Reactions
Vol. 2:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RY02410ST-1C">1c</A> For a review, see:
Casiraghi G.
Zanardi F.
Appendino G.
Rassu G.
Chem. Rev.
2000,
100:
1929
<A NAME="RY02410ST-2">2</A>
List B.
Lerner RA.
Barbas CF.
J.
Am. Chem. Soc.
2000,
122:
2395
<A NAME="RY02410ST-3A">3a</A>
Machajewski TD.
Wong C.-H.
Angew.
Chem. Int. Ed.
2000,
39:
1352
<A NAME="RY02410ST-3B">3b</A>
Gijsen HJM.
Qiao L.
Fitz W.
Wong C.-H.
Chem. Rev.
1996,
96:
443
<A NAME="RY02410ST-3C">3c</A>
Wagner J.
Lerner RA.
Barbas CF.
Science
1995,
270:
1797
<A NAME="RY02410ST-3D">3d</A>
Dean SM.
Greenberg WA.
Wong C.-H.
Adv. Synth. Catal.
2007,
349:
1308
<A NAME="RY02410ST-3E">3e</A>
Li C.
Feng X.-W.
Wang N.
Zhou Y.-J.
Yu X.-Q.
Green Chem.
2008,
10:
616
<A NAME="RY02410ST-4A">4a</A>
Li H.
Da C S.
Xiao Y.-H.
Li X.
Su Y.-N.
J.
Org. Chem.
2008,
73:
7398
<A NAME="RY02410ST-4B">4b</A>
Kantam ML.
Ramani T.
Chakrapani L.
Kumar KV.
Tetrahedron
Lett.
2008,
49:
1498
<A NAME="RY02410ST-4C">4c</A>
Paradowska J.
Stodulski M.
Mlynarski J.
Adv. Synth.
Catal.
2007,
349:
1041
<A NAME="RY02410ST-4D">4d</A>
Evans DA.
Downey CW.
Hubbs JL.
J. Am. Chem. Soc.
2003,
125:
8706
<A NAME="RY02410ST-4E">4e</A>
Trost BM.
Silcoff ER.
Ito H.
Org. Lett.
2001,
3:
2497
<A NAME="RY02410ST-4F">4f</A>
Kumagai N.
Matsunaga S.
Yoshikawa N.
Ohshima T.
Shibasaki M.
Org.
Lett.
2001,
3:
1539
For reviews on asymmetric organocatalytic
aldol reactions, see:
<A NAME="RY02410ST-5A">5a</A>
Guillena G.
Najera C.
Ramon DJ.
Tetrahedron: Asymmetry
2007,
18:
2249
<A NAME="RY02410ST-5B">5b</A>
Tanaka F.
Barbas CF.
In Enantioselective
Organocatalysis
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
p.19
<A NAME="RY02410ST-5C">5c</A>
Pellissier H.
Tetrahedron
2007,
63:
9267
<A NAME="RY02410ST-5D">5d</A>
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
<A NAME="RY02410ST-6A">6a</A>
Duarte FJS.
Cabrita EJ.
Frenking G.
Santos AG.
J. Org. Chem.
2010,
75:
2546 ; and references cited therein
<A NAME="RY02410ST-6B">6b</A>
Luo S.
Qiao Y.
Zhang L.
Li J.
Li X.
Cheng J.-P.
J.
Org. Chem.
2009,
74:
9521
<A NAME="RY02410ST-6C">6c</A>
Xiong Y.
Wang F.
Dong S.
Liu X.
Feng X.
Synlett
2008,
73
<A NAME="RY02410ST-6D">6d</A>
Luo S.
Xu H.
Zhang L.
Li J.
Cheng J.-P.
Org. Lett.
2008,
10:
653
<A NAME="RY02410ST-6E">6e</A>
Hayashi Y.
Itoh T.
Aratake S.
Ishikawa H.
Angew. Chem. Int. Ed.
2008,
47:
2082
<A NAME="RY02410ST-6F">6f</A>
Xu X.-Y.
Wang Y.-Z.
Gong L.-Z.
Org.
Lett.
2007,
9:
4247
For reviews, see:
<A NAME="RY02410ST-6G">6g</A>
Raj M.
Singh VK.
Chem. Commun.
2009,
6687
<A NAME="RY02410ST-6H">6h</A>
List B.
Acc.
Chem. Res.
2004,
37:
548
<A NAME="RY02410ST-6I">6i</A>
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
<A NAME="RY02410ST-6J">6j</A>
Miller SJ.
Acc. Chem. Res.
2004,
37:
601
<A NAME="RY02410ST-6K">6k</A>
Saito S.
Yamamoto H.
Acc. Chem. Res.
2004,
37:
570
<A NAME="RY02410ST-7A">7a</A>
Dondoni A.
Massi A.
Angew.
Chem. Int. Ed.
2008,
47:
4638
For recent reports on organocatalytic aldol reactions, see:
<A NAME="RY02410ST-7B">7b</A>
Luo S.
Xu H.
Li J.
Zhang L.
Cheng J.-P.
J.
Am. Chem. Soc.
2007,
129:
3074
<A NAME="RY02410ST-7C">7c</A>
Ramasastry SSV.
Zhang H.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2007,
129:
288
<A NAME="RY02410ST-7D">7d</A>
Wang F.
Xiong Y.
Liu X.
Feng X.
Adv. Synth. Catal.
2007,
349:
2665
<A NAME="RY02410ST-7E">7e</A>
Rodriguez B.
Rantanen T.
Bolm C.
Angew.
Chem. Int. Ed.
2006,
45:
6924
<A NAME="RY02410ST-7F">7f</A>
D’Elia V.
Zwicknagl H.
Reiser O.
Org. Lett.
2008,
73:
3262
<A NAME="RY02410ST-7G">7g</A>
Kano T.
Takai J.
Tokuda O.
Maruoka K.
Angew. Chem. Int. Ed.
2005,
44:
3055
<A NAME="RY02410ST-8A">8a</A>
Breslow R.
Rizzo CJ.
J.
Am. Chem. Soc.
1991,
113:
4340
<A NAME="RY02410ST-8B">8b</A>
Herrmann WA.
Kohlpaintner CW.
Angew. Chem.,
Int. Ed. Engl.
1997,
36:
1049
For reviews, see:
<A NAME="RY02410ST-8C">8c</A>
Lindstrom UM.
Chem. Rev.
2002,
102:
2751
<A NAME="RY02410ST-8D">8d</A>
Kobayashi S.
Manabe K.
Acc. Chem. Res.
2002,
35:
209
<A NAME="RY02410ST-9A">9a</A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J.
Am. Chem. Soc.
2001,
123:
5260
<A NAME="RY02410ST-9B">9b</A>
Torii H.
Nakadai M.
Ishihara K.
Saito S.
Yamamoto H.
Angew.
Chem. Int. Ed.
2004,
43:
1983
<A NAME="RY02410ST-9C">9c</A>
Nyberg AI.
Usanp A.
Pihko PM.
Synlett
2004,
1891
<A NAME="RY02410ST-9D">9d</A>
Cordova A.
Notz W.
Barbas CF.
Chem.
Commun.
2002,
3024
<A NAME="RY02410ST-9E">9e</A>
Darbre T.
Machuqueiro M.
Chem. Commun.
2003,
1090
<A NAME="RY02410ST-9F">9f</A>
Tang Z.
Yamg Z.-H.
Cun L.-F.
Gong L.-Z.
Mi A.-Q.
Jiang Y.-Z.
Org. Lett.
2004,
6:
2285
<A NAME="RY02410ST-9G">9g</A>
Chimni SS.
Mahajan D.
Suresh Babu VV.
Tetrahedron Lett.
2005,
46:
5617
<A NAME="RY02410ST-10A">10a</A>
Heine A.
Desantis G.
Luz JG.
Mitchell M.
Wong C.-H.
Wilson IA.
Science
2001,
294:
369
<A NAME="RY02410ST-10B">10b</A>
Zhu X.
Tanaka F.
Hu Y.
Heine A.
Fuller R.
Zhing G.
Olson AJ.
Lerner RA.
Barbas CF.
Wilson IA.
J. Mol. Biol.
2004,
343:
1269
<A NAME="RY02410ST-11">11</A>
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2006,
128:
734
<A NAME="RY02410ST-12">12</A>
Maya V.
Singh VK.
Org. Lett.
2009,
9:
1117
<A NAME="RY02410ST-13">13</A> For asymmetric aldol reaction using
BINOL-derived primary amine, see:
Liu Q.-Z.
Wang X.-L.
Luo S.-W.
Zheng B.-L.
Qin D.-B.
Tetrahedron
Lett.
2008,
49:
7434
<A NAME="RY02410ST-14A">14a</A>
Raj M.
Maya V.
Ginotra SK.
Singh VK.
Org.
Lett.
2006,
8:
4097
<A NAME="RY02410ST-14B">14b</A>
Maya V.
Raj M.
Singh VK.
Org.
Lett.
2007,
9:
2593
<A NAME="RY02410ST-14C">14c</A>
Gandhi S.
Singh VK.
J. Org. Chem.
2008,
73:
9411
<A NAME="RY02410ST-14D">14d</A>
Raj M.
Maya V.
Singh VK.
J.
Org. Chem.
2009,
74:
4289
<A NAME="RY02410ST-15A">15a</A>
Song L.
Chen X.
Zhang S.
Zhang H.
Li P.
Luo G.
Liu W.
Duan W.
Wang W.
Org. Lett.
2008,
10:
5489
<A NAME="RY02410ST-15B">15b</A>
Zhang H.
Zhang S.
Liu L.
Luo G.
Duan W.
Wang W.
J.
Org. Chem.
2010,
75:
368
For a diamine derived from trans-1,2-diaminocyclohexane and its
application to direct asymmetric aldol reaction from our group,
see:
<A NAME="RY02410ST-16A">16a</A>
Raj M.
Parashari GS.
Singh VK.
Adv. Synth. Catal.
2009,
351:
1284
<A NAME="RY02410ST-16B">16b</A>
Raj M.
Veerasamy N.
Singh VK.
Tetrahedron
Lett.
2010,
51:
2157
<A NAME="RY02410ST-17">17</A>
General Procedure
for the Direct Aldol Reaction with the Catalyst 3 in Brine:
An aldehyde (0.5 mmol) was added to a mixture of ketone (2 mmol)
and an organocatalyst 3 (10 mol%)
with DNBSA (10 mol%) in brine (0.5 mL) at r.t. The reaction
mixture was stirred and the progress of the reaction was monitored
by TLC. After reaction was over (as indicated by TLC), the reaction
mixture was diluted with EtOAc (2 mL). The organic layer was separated
and dried over anhyd Na2SO4. It was purified
over silica gel by column chromatography. The enantiomeric excess(ee)
of the aldol product was determined by chiral HPLC analysis. The relative
and absolute configurations of the products were determined by comparison
with the known ¹H NMR, chiral HPLC analysis,
and optical rotation values.
<A NAME="RY02410ST-18A">18a</A>
Kumar A.
Pawar SS.
Tetrahedron
2003,
59:
5019
<A NAME="RY02410ST-18B">18b</A>
Kleiner CM.
Schreiner PR.
Chem.
Commun.
2006,
4315
<A NAME="RY02410ST-19A">19a</A>
Nakadai M.
Saito S.
Yamamoto H.
Tetrahedron
2002,
58:
8167
<A NAME="RY02410ST-19B">19b</A>
Ishii T.
Fiujioka S.
Sekiguchi Y.
Kotsuki H.
J. Am. Chem. Soc.
2004,
126:
9558
<A NAME="RY02410ST-19C">19c</A>
Seebach D.
Golinski J.
Helv. Chim. Acta
1981,
64:
1413
<A NAME="RY02410ST-20">20</A>
Compound characterization data for
selected compounds:
(2S,1′
R
)-2-[Furan-2-yl(hydroxy)methyl]cyclohexan-1-one (4f): It was obtained in a maximum of 80% yield
and 96% ee. The optical purity was determined by HPLC on chiralpak
AD-H column (hexane-2-propanol, 90:10); flow rate 0.5 mL/min,
220 nm; t
R
(
major) = 26.8
min, t
R
(
minor) = 31.2 min; [α]²5
D +21
(c = 1.0, CHCl3). ¹H
NMR (500 MHz, CDCl3): δ = 1.23-1.35
(m, 1 H), 1.61-1.71 (m, 3 H), 1.83-1.85 (m, 1
H), 2.10-2.37 (m, 1 H), 2.38-2.49 (m, 2 H), 2.89-2.95
(m, 1 H), 3.89 (br s, 1 H), 4.83 (d, J = 8.6
Hz, 1 H), 6.27-6.34 (m, 2 H), 7.36-7.38 (m, 1
H). Anal. Calcd for C11H14O3: C,
68.02; H, 7.27. Found: C, 68.09; H, 7.25.
(2S,1′
R
)-2-[Hydroxy(naphthalene-2-yl)methyl]-cyclohexan-1-one (4g): It was obtained in a maximum of 88% yield
and 96% ee. The optical purity was determined by HPLC on
chiralpak AS-H column (hexane-2-propanol, 90:10); flow
rate 0.5 mL/min; t
R
(
major) = 26.6
min, t
R
(
minor) = 30.8
min; [α]²5
D +5.8
(c = 1.3, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 1.25-1.35
(m, 2 H), 1.48-1.76 (m, 3 H), 2.04-2.09 (m, 1
H), 2.36-2.51 (m, 2 H), 2.69-2.75 (m, 1 H), 4.08 (br
s, 1 H), 4.96 (d, J = 8.8 Hz,
1 H), 7.45-7.49 (m, 2 H), 7.71-7.89 (m, 5 H).
Anal. Calcd for C17H18O2: C, 80.28;
H, 7.13. Found: C, 80.18; H, 7.11.
(2S,1′
R
) 3-[Hydroxy(phenyl)methyl]tetrahydrothio-pyran-4-one (5b): It was obtained in a maximum of 77% yield
and 98% ee. The optical purity was determined by HPLC on
chiralpak OD-H column (hexane-2-propanol, 98:2); flow rate
0.5 mL/min, t
R
(
major) = 60.6
min, t
R
(
minor) = 87.1
min; [α]²5
D +17.1
(c = 1.4, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 2.48-2.60
(m, 2 H), 2.75-2.81 (m, 1 H), 2.83-2.88 (m, 1
H), 2.92-3.04 (m, 3 H), 3.42 (br s, 1 H), 4.97
(d, J = 8.8 Hz, 1 H), 7.26-7.39
(m, 5 H). Anal. Calcd for C12H14O2S:
C, 64.83; H, 6.35. Found: C, 64.89; H, 6.33.