Subscribe to RSS
DOI: 10.1055/s-0030-1259516
Transition-Metal-Free, Chemoselective Aerobic Oxidations of Sulfides and Alcohols with Potassium Nitrate and Pyridinium Tribromide or Bromine
Publication History
Publication Date:
27 January 2011 (online)

Abstract
An efficient oxidation of sulfides with air catalyzed by the combination of potassium nitrate with pyridinium tribromide under transition-metal-free conditions was reported. By replacing pyridinium tribromide with bromine, the reaction system was also useful in the oxidation of alcohols. All reactions afforded the corresponding products in good to excellent yields with high chemoselectivities.
Key words
aerobic oxidation - sulfide - alcohol - chemoselectivity - transition-metal-free
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Drabowicz J.Kielbasinski P.Mikolajczyk M. In The Chemistry of Sulfones and SulfoxidesPatai S.Rappoport Z.Stirling C. Wiley; Chichester: 1988. p.233-278Reference Ris Wihthout Link - 1b
Sulfur
Reagents in Organic Synthesis
Metzner P.Thuillier A. Academic Press; London: 1994.Reference Ris Wihthout Link - 1c
Hudlicky M. Oxidations in Organic Chemistry American Chemical Society; Washington DC: 1990.Reference Ris Wihthout Link - 1d
Fernandez M.Tojo G. In Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common PracticeTojo G. Springer; New York: 2006.Reference Ris Wihthout Link - 2a
Shi Z.-Z.Zhang C.Li S.Pan D.-L.Ding S.-T.Cui Y.-X.Jiao N. Angew. Chem. Int. Ed. 2009, 48: 4572Reference Ris Wihthout Link - 2b
Zhang C.Jiao N. J. Am. Chem. Soc. 2010, 132: 28Reference Ris Wihthout Link - 2c
He X.-J.Shen Z.-L.Mo W.-M.Sun N.Hu B.-X.Hu X.-Q. Adv. Synth. Catal. 2009, 351: 89Reference Ris Wihthout Link - 2d
Miao C.-X.He L.-N.Wang J.-L.Wu F. J. Org. Chem. 2010, 75: 257Reference Ris Wihthout Link - 3a
Legros J.Bolm C. Angew. Chem. Int. Ed. 2003, 42: 5487Reference Ris Wihthout Link - 3b
Hosseinpoor F.Golchoubian H. Tetrahedron Lett. 2006, 47: 5195Reference Ris Wihthout Link - 3c
Liu R.Wu L.-Z.Feng X.-M.Zhang Z.Li Y.-Z.Wang Z.-L. Inorg. Chim. Acta 2007, 360: 656Reference Ris Wihthout Link - 3d
Rosa MD.Lamberti M.Pellecchia C.Scettri A.Villano R.Soriente A. Tetrahedron Lett. 2006, 47: 7233Reference Ris Wihthout Link - 3e
Bolm C.Bienewald F. Angew. Chem., Int. Ed. Engl. 1995, 34: 2883Reference Ris Wihthout Link - 3f
Karimi B.Nezhad MG.Clark JH. Org. Lett. 2005, 7: 625Reference Ris Wihthout Link - 3g
Scarso A.Strukul G. Adv. Synth. Catal. 2005, 347: 1227Reference Ris Wihthout Link - 3h
Yuan Y.Bian Y.-B. Tetrahedron Lett. 2007, 48: 8518Reference Ris Wihthout Link - 3i
Shi F.Tse MK.Kaiserand HM.Beller M. Adv. Synth. Catal. 2007, 349: 2425Reference Ris Wihthout Link - 3j
Wang X.-S.Wang X.-W.Guo H.-C.Wang Z.Ding K.-L. Chem. Eur. J. 2005, 11: 4078Reference Ris Wihthout Link - 4a
Martin SE.Garrone A. Tetrahedron Lett. 2003, 44: 549Reference Ris Wihthout Link - 4b
Shulpin GB.Suss-Fink G.Shulpina LS.
J. Mol. Catal. A: Chem. 2001, 170: 17Reference Ris Wihthout Link - 4c
Liu J.-H.Wang F.Sun K.-P.Xu X.-L. Adv. Synth. Catal. 2007, 349: 2439Reference Ris Wihthout Link - 4d
Kantam ML.Yadav J.Laha S.Sreedhar B.Bhargava S. Adv. Synth. Catal. 2008, 350: 2575Reference Ris Wihthout Link - 4e
Roy MN.Poupon JC.Charette AB. J. Org. Chem. 2009, 74: 8510Reference Ris Wihthout Link - 5a
Martin SE.Rossi LI. Tetrahedron Lett. 2001, 42: 7147Reference Ris Wihthout Link - 5b
Boring E.Geletii YV.Hill CL. J. Am. Chem. Soc. 2001, 123: 1625Reference Ris Wihthout Link - 5c
Komatsu N.Uda M.Suzuki H. Chem. Lett. 1997, 1229Reference Ris Wihthout Link - 5d
Riley DP.Shumate RE.
J. Am. Chem. Soc. 1984, 106: 3179Reference Ris Wihthout Link - 5e
Iwahama T.Sakaguchi S.Ishii Y. Tetrahedron Lett. 1998, 39: 9059Reference Ris Wihthout Link - 5f
Semmelhack MF.Schmid CR.Cortés DA.Chou CS. J. Am. Chem. Soc. 1984, 106: 3374Reference Ris Wihthout Link - 5g
Kaneda K.Fujie Y.Ebitani K. Tetrahedron Lett. 1997, 38: 9023Reference Ris Wihthout Link - 5h
Iwahama T.Yosino Y.Keitoku T.Sakaguchi S.Ishii Y. J. Org. Chem. 2000, 65: 6502Reference Ris Wihthout Link - 5i
Jia C.-G.Jing F.-Y.Hu W.-D.Huang M.-Y.Jiang Y.-Y. J. Mol. Catal. 1994, 91: 139Reference Ris Wihthout Link - 5j
Chan W.-L.Sung H.-J.Koo S.-Y.Han M.-J.Chi K.-W. Tetrahedron Lett. 2009, 50: 559Reference Ris Wihthout Link - 5k
Minisci F.Punta C.Recupero F.Fontana F.Pedulli GF. Chem. Commun. 2002, 688Reference Ris Wihthout Link - 5l
Martin SE.Suarez DF. Tetrahedron Lett. 2002, 43: 4475Reference Ris Wihthout Link - 5m
Kinen CO.Rossi LI.de Rossi RH. J. Org. Chem. 2009, 74: 7132Reference Ris Wihthout Link - 6a
Zhang H.Chen C.-Y.Liu R.-H.Xu Q.Zhao W.-Q. Molecules 2010, 15: 83Reference Ris Wihthout Link - 6b
Zhang H.Chen C.-Y.Liu R.-H.Xu Q.Liu J.-H. Synth. Commun. 2008, 38: 4445Reference Ris Wihthout Link - 6c
Xie Y.Mo W.-M.Xu D.Shen Z.-L.Sun N.Hu B.-X.Hu X.-Q. J. Org. Chem. 2007, 72: 4288Reference Ris Wihthout Link - 6d
Liu R.-H.Dong C.-Y.Liang X.-M.Wang X.-J.Hu X.-Q. J. Org. Chem. 2005, 70: 729Reference Ris Wihthout Link - 6e
Liu R.-H.Liang X.-M.Dong C.-Y.Hu X.-Q. J. Am. Chem. Soc. 2004, 126: 4112Reference Ris Wihthout Link - 6f
Yang G.-Y.Wang W.Zhu W.-M.An C.-B.Gao X.-Q.Song M.-P. Synlett 2010, 437Reference Ris Wihthout Link - 7
Djerassi C.Scholz CR. J. Am. Chem. Soc. 1948, 70: 417 - 8
Doxsee KM.Hutchison JE. In Green Organic Chemistry Thompson Brooks/Cole; Pacific Grove CA: 2004. p.120-124 - 9
Suarez AR.Baruzzi AM.Rossi LI. J. Org. Chem. 1998, 63: 5689 - 10a
Bosch E.Kochi JK. J. Org. Chem. 1996, 60: 3172Reference Ris Wihthout Link - 10b
Roy S.Baiker A. Chem. Rev. 2009, 109: 4054Reference Ris Wihthout Link - 11
Silverstein RM.Webster FX.Kiemle DJ. In Spectrometric Identification of Organic Compounds John Wiley and Sons, Inc.; New York: 2005. - 12
Thiemann M.Scheibler E.Wiegand KW. Nitric Acid, Nitrous Acid, and Nitrogen Oxides, In Ullmann’s Encyclopedia of Industrial Chemistry Wiley-VCH; Weinheim: 2005.
References and Notes
General Methods
¹H
NMR and ¹³C NMR spectra were obtained
with a Bruker AVANCE 600 spectrometer in CDCl3 with TMS
as an internal standard. Infrared spectra were recorded with a Bruker
Tensor 27 FT-IR spectrometer using KBr pellets. GC-MS was performed
on a FINNIGAN Trace DSQ chromatograph.
Procedure
for Oxidation of Sulfide Using KNO
3
-PyHBr
3
/Br
2
as Catalyst
A typical experiment
was carried out in an open reaction tube. Sulfide (1 mmol) was added
to the mixture of KNO3 (0.1 mmol) and PyHBr3 (or
bromine; 0.15 mmol) in MeCN (2 mL). The reaction mixture was stirred
under aerial conditions at r.t. The reaction progress was detected
by
GC and TLC. After the starting material had disappeared, Na2S2O3 aq
solution was used to quench the reaction. CH2Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2Cl2.
The combined organic layers were washed with H2O and
dried over MgSO4. The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative
Spectral Data of Sulfoxide - Methyl Phenyl Sulfoxide
IR
(KBr): νmax = 3265, 1477, 1038, 749,
692 cm-¹. ¹H NMR (600
MHz, CDCl3): δ = 2.73
(s, 3 H), 7.48-7.54 (m, 3 H), 7.64-7.65 (d, 2
H, J = 7.44
Hz). ¹³C NMR (150 MHz, CDCl3): δ = 44.13,
123.6, 129.5, 131.2, 145.7. MS (EI, 70 eV): m/z (%) = 140 [M+].³h
Procedure for Oxidation of Benzaldehydes
and Acetophenones Using KNO
3
-Br
2
/PyHBr
3
as Catalyst
A typical experiment
was carried out in an open reaction tube. Benzaldehyde or acetophenone
(1 mmol) was added to the mixture of KNO3 (0.2 mmol)
and bromine (0.3 mmol) in MeCN (2 mL). The reaction mixture was
stirred under aerial conditions at 50 ˚C. The reaction
progress was detected by GC and TLC. After the starting material
had disappeared, Na2S2O3 aq solution
was used to quench the reaction. CH2Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2Cl2.
The combined organic layers were washed with H2O and
dried over MgSO4. The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative Spectral Data of Aldehyde - Benzaldehyde
IR
(KBr): νmax = 3064, 2819, 1701, 1311,
1203, 746 cm-¹.
¹H
NMR (600 MHz, CDCl3): δ = 7.51-7.54
(t, 2 H, J = 7.54 Hz),
7.61-7.64 (t, 1 H, J = 7.43
Hz), 7.87-7.88 (d, 2 H, J = 7.69
Hz), 10.00 (s, 1 H). ¹³C NMR (150 MHz,
CDCl3): δ = 129.0,
129.7, 134.4, 136.4, 192.4. MS (EI, 70 eV): m/z (%) = 106 [M+].²c