References and Notes
1
Guo H.-C.
Ma J.-A.
Angew Chem. Int. Ed.
2006,
45:
354
2
Nicolaou KC.
Montagnon T.
Snyder SA.
Chem. Commun.
2003,
551
3a
Dalko PI.
Moisan L.
Angew
Chem. Int. Ed.
2001,
40:
3726
3b
List B.
Synlett
2001,
1675
3c
List B.
Tetrahedron
2002,
58:
2481
3d
Dalko PI.
Moisan L.
Angew Chem.
Int. Ed.
2004,
43:
5138
3e
Berkessel A.
Gröger H.
Asymmetric
Organocatalysis
Wiley-VCH;
Weinheim:
2005.
3f
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
3g
Lelais G.
Macmillan WC.
Aldrichimica Acta
2006,
39:
79
4a
List B.
Chem. Commun.
2006,
819
4b
Yua X.
Wang W.
Org. Biomol. Chem.
2008,
6:
2037
4c
Melchiorre P.
Marigo M.
Carlone A.
Bartoli G.
Angew. Chem. Int. Ed.
2008,
47:
6138
4d
Spande TF.
Jain P.
Garraffo HM.
Pannell LK.
Yeh HJC.
Daly JW.
Fukumoto S.
Imamura K.
Tokuyama T.
Torres JA.
Snelling RR.
Jones TH.
J. Nat. Prod.
1999,
62:
5
4e
Jones TH.
Gorman JST.
Snelling RR.
Delabie JHC.
Blum
MS.
Garraffo HM.
Jain P.
Daly JW.
Spande TF.
J.
Chem. Ecol.
1999,
25:
1179
4f
Daly JW.
Garraffo HM.
Jain P.
Spande TF.
Snelling RR.
Jaramillo C.
Rand AS.
J. Chem. Ecol.
2000,
26:
73
4g
Daly JW.
Spande TF.
Garraffo HM.
J. Nat. Prod.
2005,
68:
1556
5a
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
44:
861
5b
Enders D.
Jeanty M.
Bats JW.
Synlett
2009,
3175
5c
Grondal C.
Jeanty M.
Enders D.
Nature
Chem.
2010,
2:
167
5d
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
5e
Wang Y.
Han R.-G.
Zhao Y.-L.
Yang S.
Xu P.-F.
Dixon DJ.
Angew. Chem. Int. Ed.
2009,
48:
1
5f
Eder U.
Saver G.
Wiechert R.
Angew.
Chem., Int. Ed. Engl.
1971,
10:
496
5g
Hajor ZG.
Parrish DR.
J.
Org. Chem.
1974,
39:
1615
5h
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
1272
5i
Hong B.-C.
Wu M.-F.
Tseng H.-C.
Liao J.-H.
Org. Lett.
2006,
8:
2271
6a
Chandrasekhar S.
Mallikarjun K.
Pavankumarreddy G.
Rao KV.
Jagadeesh B.
Chem. Commun.
2009,
4985
6b
Wang Y.
Yu D.-F.
Liu Y.-Z.
Wei H.
Luo Y.-C.
Dixon DJ.
Xu P.-F.
Chem. Eur.
J.
2010,
16:
3922
6c
Urushima T.
Sakamoto D.
Ishikawa H.
Hayashi Y.
Org. Lett.
2010,
12:
4588
7
Ko S.
Yao C.-F.
Tetrahedron
2006,
62:
7293
8a
Steffan B.
Tetrahedron
1991,
47:
8729
8b
Kubanek J.
Williams DE.
Dilip de Silva E.
Allen T.
Andersen RJ.
Tetrahedron Lett.
1995,
36:
6189
8c
Davis RA.
Carroll AR.
Quinn RJ.
J. Nat. Prod.
2002,
65:
454
9a
Warnick JE.
Jessup PJ.
Overman LE.
Eldefrawi ME.
Nimit Y.
Daly JW.
Albuquerque EX.
Mol. Pharmacol.
1982,
22:
565
9b
Daly JW.
Nishizawa Y.
Padgett WL.
Tokuyama T.
McCloskey PJ.
Waykole L.
Schultz AG.
Aronstam RS.
Neurochem.
Res.
1991,
16:
1207
10
Daly JW.
Tokuyama T.
Habermehl G.
Karle IL.
Witkop B.
Liebigs
Ann. Chem.
1969,
727:
198
11
Sainani JB.
Shah AC.
Indian J. Chem., Sect.
B: Org. Chem. Incl. Med. Chem.
1994,
33:
526
12
Tokuyama T.
Tsujita T.
Shimada A.
Garraffo HM.
Spande TF.
Daly JW.
Tetrahedron
1991,
47:
5401
13
Daly JW.
Witkop B.
Tokuyama T.
Nishikawa T.
Karle IL.
Helv.
Chim. Acta
1977,
60:
1128
14a
Oppolzer W.
Fröstl W.
Weber HP.
Helv. Chim. Acta
1975,
58:
593
14b
Girard N.
Hurvois J.-P.
Moinet C.
Toupet L.
Eur. J. Org. Chem.
2005,
2269
15
Efange SMN.
Khare AB.
Mach RH.
Parsons SM.
J.
Med. Chem.
1999,
42:
2862
16
Li M.
Zuo Z.
Wen L.
Wang S.
J.
Comb. Chem.
2008,
10:
436
17
Tu SJ.
Zhou JF.
Deng X.
Cai PJ.
Wang H.
Feng JC.
Chin. J. Org. Chem.
2001,
21:
313
18
Sabitha G.
Reddy GSK.
Reddy CS.
Yadav JS.
Tetrahedron
Lett.
2003,
44:
4129
19
Ji SJ.
Jiang ZQ.
Lu J.
Loa TP.
Synlett
2004,
831
20
Zhang XY.
Li YZ.
Fan XS.
Qu GR.
Hu XY.
Wang JJ.
Chin. Chem. Lett.
2006,
17:
150
21
Maheswara M.
Siddaiah V.
Damu GLV.
Venkata Rao C.
ARKIVOC
2006,
(ii):
201
22
Das B.
Ravikanth B.
Ramu R.
Vittal Rao B.
Chem. Pharm. Bull.
2006,
54:
1044
23
Song G.
Wang B.
Wu X.
Kang Y.
Yang L.
Synth. Commun.
2005,
35:
2875
24
Reddy CS.
Raghu M.
Chin. Chem. Lett.
2008,
19:
775
25
Adibi H.
Samimi HA.
Beygzadeh M.
Catal.
Commun.
2007,
8:
2119
26
Heravi MM.
Bakhtiri K.
Javadi NM.
Bamoharram FF.
Saeedi M.
Oskooi HA.
J. Mol. Catal. A:
Chem.
2007,
264:
50
27
Donelson JL.
Gibbs A.
De S K.
J.
Mol. Catal. A: Chem.
2006,
256:
309
28
Cherkupally SR.
Mekalan R.
Chem. Pharm. Bull.
2008,
56:
1002
29
Sapkal SB.
Shelke KF.
Shingate BB.
Shingare MS.
Tetrahedron
Lett.
2009,
50:
1754
30
Kibayashi C.
Aoyagi S.
Stud. Nat. Prod. Chem.
1997,
9:
3
31a
Ballini R.
Rosini G.
Synthesis
1988,
833
31b
Rosini G.
Ballini R.
Petrini M.
Marotta E.
Righi P.
Org.
Prep. Proced. Int.
1990,
22:
707
31c
Ballini R.
Marziali P.
Mozzicafreddo A.
J.
Org. Chem.
1996,
61:
3209
31d
Ballini R.
Bosica G.
Tetrahedron Lett.
1996,
37:
8027
31e
Ballini R.
Bosica G.
J. Org. Chem.
1997,
62:
425
31f
Ballini R.
Petrini M.
Tetrahedron
2004,
60:
1017
31g
Amantini D.
Fringuelli F.
Piermatti O.
Pizzo F.
Vaccaro C.
J.
Org. Chem.
2003,
68:
9263
31h
Marotta E.
Righi P.
Rosini G.
Tetrahedron
Lett.
1998,
39:
1041
31i
Areces P.
Gil MV.
Higes FJ.
Romàn E.
Serrano JA.
Tetrahedron Lett.
1998,
39:
8557
32
Pinnick HW.
Org.
React. (N.Y.)
1990,
38:
655
33a
Yadav LDS.
Rai A.
Synlett
2009,
1067
33b
Yadav LDS.
Rai A.
Tetrahedron
Lett.
2009,
50:
640
33c
Yadav LDS.
Rai A.
Tetrahedron
Lett.
2008,
49:
5751
33d
Awasthi C.
Yadav LDS.
Synlett
2010,
1783
34a
Yadav LDS.
Rai A.
Rai VK.
Awasthi C.
Tetrahedron
2008,
64:
1420
34b
Yadav LDS.
Rai VK.
Singh S.
Singh P.
Tetrahedron
Lett.
2010,
51:
1657
34c
Yadav LDS.
Singh S.
Rai VK.
Synlett
2010,
240
34d
Singh S.
Rai VK.
Singh P.
Yadav LDS.
Synthesis
2010,
2957
35
General Procedure
for the Synthesis of
cis
-Decahydro-quinolines 5: To a solution
of ketone 1 (0.4 mmol) and the catalyst
diphenylprolinol trimethylsilyl ether 4a (20
mol%) in 1,4-dioxane (1 mL) was added nitroalkene 2 (0.4 mmol) under stirring. The reaction
mixture was stirred at r.t. for 8 h followed by addition of aldimine 3 (0.4 mmol) along with K2CO3 (0.2
mmol) in 1,4-dioxane (2 mL) and stirring at r.t. until complete
consumption of aldimine 3 (11-18
h) as indicated by TLC. The reaction mixture was concentrated under
reduced pressure and the residue was directly purified by silica
gel column chromatography (EtOAc-hexane as eluent) to afford
an analytically pure sample of cis-decahydroquinolines 5 (Table
[²]
).
Characterization Data of Representative Compounds
cis
-5:
Compound cis-
5a:
white solid; yield: 78%; mp 178-179 ˚C. IR
(KBr): 3589, 2964, 1554, 1534, 1408, 1348, 1174, 1092, 856, 797,
745, 702, 605 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 1.10-1.33
(m, 4 H), 1.60-1.76 (m, 5 H), 1.92 (br s, 1 H, exch. D2O),
2.34 (s, 3 H), 3.34 (dd, 1 H, J = 11.7,
11.6 Hz), 5.06 (d, 1 H, J = 11.1
Hz), 5.91 (dd, 1 H, J = 11.7,
11.1 Hz), 7.34 (d, 2 H, J = 8.1
Hz), 7.45-7.75 (m, 10 H), 7.72 (d, 2 H, J = 8.5
Hz). ¹³C NMR (100 MHz, DMSO-d
6): δ = 17.1, 18.7,
23.6, 24.3, 25.1, 30.4, 37.9, 42.7, 75.1, 84.8, 124.8, 126.0, 127.4,
128.1, 129.3, 130.6, 131.7, 134.6, 137.9, 140.1, 141.5, 142.7. EIMS: m/z = 506 [M+].
Anal. Calcd for C28H30N2O5S:
C, 66.38; H, 5.97; N, 5.53. Found: C, 66.10; H, 5.61; N, 5.83. [α]D
²0 +22
(c = 0.60, THF). The enantiomeric
excess was determined to be 97% by HPLC on a chiral Eurocel
column (250 × 4.6 mm, 5 µm): λ = 225
nm; i-PrOH-hexane (10:90), flow
rate: 1 mL/min; t
R
= 5.8 min (minor), t
R
= 6.8
min (major).
Compound cis-
5e: white solid; yield: 90%; mp
189-190 ˚C. IR (KBr): 3598, 2952, 1557, 1532,
1402, 1345, 1161, 1090, 854, 799, 741, 710, 606 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 1.06-1.30
(m, 4 H), 1.61-1.79 (m, 5 H), 1.94 (br s, 1 H, exch. D2O),
2.36 (s, 3 H), 3.35 (dd, 1 H, J = 11.8,
11.6 Hz), 5.05 (d, 1 H, J = 11.2
Hz), 5.93 (dd, 1 H, J = 11.8,
11.2 Hz), 7.30 (d, 2 H, J = 8.1
Hz), 7.65-7.70 (m, 2 H), 7.66-7.71 (m, 5 H), 7.72
(d, 2 H, J = 8.3 Hz), 8.10-8.17
(m, 2 H).
¹³C NMR (100 MHz,
DMSO-d
6): δ = 18.9,
20.1, 21.8, 22.7, 25.2, 27.6, 34.9, 39.3, 75.4, 84.5, 125.1, 126.9,
127.8, 128.6, 129.5, 131.1, 132.9, 134.4, 137.0, 138.3, 140.4, 141.6. EIMS: m/z = 540 [M+].
Anal. Calcd for C28H29ClN2O5S:
C, 62.16; H, 5.40; N, 5.18. Found: C, 62.52; H, 5.58; N, 4.86. [α]D
²0 +19
(c = 0.80, THF). The enantiomeric
excess was determined to be 91% by HPLC on a chiral Eurocel
column (250 × 4.6 mm, 5 µm): λ = 225
nm; i-PrOH-hexane (10:90), flow
rate: 1 mL/min; t
R
= 5.9 min (minor), t
R
= 7.1
min (major).
Compound cis-
5m: white solid; yield: 71%; mp
187-188 ˚C. IR (KBr): 3592, 2815, 2910, 1559,
1531, 1410, 1340, 1169, 1095, 852, 796, 741, 708, 601 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 1.09-1.34
(m, 4 H), 1.59-1.76 (m, 5 H), 1.91 (br s, 1 H, exchangeable
with D2O), 2.33 (s, 3 H), 3.34 (dd, 1 H, J = 11.6, 11.4 Hz), 3.85 (s,
3 H), 5.09 (d, 1 H, J = 11.2 Hz),
5.95 (dd, 1 H, J = 11.6, 11.2
Hz), 7.31 (d, 2 H, J = 8.0 Hz),
7.61-7.69 (m, 5 H), 7.66-7.68 (m, 2 H), 7.74 (d,
2 H,
J = 8.2 Hz),
8.01-8.03 (m, 2 H). ¹³C NMR
(100 MHz, DMSO-d
6): δ = 17.6,
18.8, 21.5, 24.3, 25.6, 28.9, 37.5, 42.1, 49.5, 75.4, 84.2, 114.8,
126.7, 127.9, 128.8, 130.0, 131.7, 132.5, 134.7, 136.7, 138.1, 141.6,
156.6. EIMS: m/z = 536 [M+].
Anal. Calcd for C29H32N2O6S:
C, 64.91; H, 6.01; N, 5.22. Found: C, 65.11; H, 5.77; N, 4.93. [α]D
²0 +25
(c = 0.90, THF). The enantiomeric
excess was determined to be 94% by HPLC on a chiral Eurocel
column (250 × 4.6 mm, 5 µm): λ = 225
nm; i-PrOH-hexane (10:90), flow
rate: 1 mL/min; t
R
= 6.7 min (minor), t
R
= 7.8
min (major).