References and Notes
<A NAME="RU09810ST-1A">1a</A>
Hudlicky M.
Pavlath AE.
Chemistry of Organic Fluorine Compounds II
American
Chemical Society;
Washington DC:
1995.
<A NAME="RU09810ST-1B">1b</A>
Kirk KLJ.
J. Fluorine Chem.
2006,
127:
1013
<A NAME="RU09810ST-1C">1c</A>
Isanobor C.
O’Hagan D.
J. Fluorine Chem.
2006,
127:
303
<A NAME="RU09810ST-1D">1d</A>
Muller K.
Faeh C.
Diederich F.
Science
2007,
317:
1881
<A NAME="RU09810ST-1E">1e</A>
Kirk KL.
Org. Process Res. Dev.
2008,
12:
305
<A NAME="RU09810ST-2A">2a</A>
Purser S.
Moore PR.
Swallow S.
Gouverneur V.
Chem.
Soc. Rev.
2008,
37:
320
<A NAME="RU09810ST-2B">2b</A>
Hiyama T.
Kanie K.
Kusumoto T.
Morizawa Y.
Shimizu M.
Organofluorine Compounds:
Chemistry and Applications
Springer-Verlag;
Berlin:
2000.
<A NAME="RU09810ST-3A">3a</A>
Enantiocontrolled Synthesis of Fluoroorganic Compounds
Soloshonok VA.
John
Wiley & Sons;
Chichester:
1999.
<A NAME="RU09810ST-3B">3b</A>
Bravo P.
Resnati G.
Tetrahedron: Asymmetry
1990,
1:
661
<A NAME="RU09810ST-3C">3c</A>
Ramachandran PV.
Asymmetric
Fluoroorganic Chemistry: Synthesis, Application, and Future Directions
ACS
Symposium Series 746:
American Chemical Society;
Washington / DC:
2000.
For reviews, see:
<A NAME="RU09810ST-4A">4a</A>
Mikami K.
Itoh Y.
Yamanaka M.
Chem.
Rev.
2004,
104:
1
<A NAME="RU09810ST-4B">4b</A>
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
<A NAME="RU09810ST-4C">4c</A>
Ma J.-A.
Cahard D.
Chem. Rev.
2008,
108:
PR1
<A NAME="RU09810ST-4D">4d</A>
France S.
Weatherwax A.
Lectka T.
Eur.
J. Org. Chem.
2005,
475
<A NAME="RU09810ST-4E">4e</A>
Oestreich M.
Angew. Chem.
Int. Ed.
2005,
44:
2324
<A NAME="RU09810ST-4F">4f</A>
Pihko PM.
Angew. Chem. Int. Ed.
2006,
45:
544
<A NAME="RU09810ST-4G">4g</A>
Prakash GKS.
Beier P.
Angew.
Chem. Int. Ed.
2006,
45:
2172
<A NAME="RU09810ST-4H">4h</A>
Bobbio C.
Gouverneur V.
Org. Biomol. Chem.
2006,
4:
2065
<A NAME="RU09810ST-4I">4i</A>
Shibata N.
Ishimaru T.
Nakamura S.
Toru T.
J. Fluorine Chem.
2007,
128:
469
<A NAME="RU09810ST-4J">4j</A>
Brunet VA.
O’Hagan D.
Angew.
Chem. Int. Ed.
2008,
47:
1179
<A NAME="RU09810ST-4K">4k</A>
Smits R.
Cadicamo CD.
Burger K.
Koksch B.
Chem. Soc. Rev.
2008,
37:
1727
<A NAME="RU09810ST-4L">4l</A>
Kang YK.
Kim DY.
Curr.
Org. Chem.
2010,
14:
917
For recent selected examples of
catalytic asymmetric fluorinations of active methines, see:
<A NAME="RU09810ST-5A">5a</A>
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359
<A NAME="RU09810ST-5B">5b</A>
Kim DY.
Park EJ.
Org. Lett.
2002,
4:
545
<A NAME="RU09810ST-5C">5c</A>
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem.
Soc.
2002,
124:
14530
<A NAME="RU09810ST-5D">5d</A>
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
<A NAME="RU09810ST-5E">5e</A>
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
<A NAME="RU09810ST-5F">5f</A>
Bernardi L.
Jørgensen KA.
Chem.
Commun.
2005,
1324
<A NAME="RU09810ST-5G">5g</A>
Kim SM.
Kim HR.
Kim DY.
Org. Lett.
2005,
7:
2309
<A NAME="RU09810ST-5H">5h</A>
Kim HR.
Kim DY.
Tetrahedron Lett.
2005,
46:
3115
<A NAME="RU09810ST-5I">5i</A>
Ishimaru T.
Shibata N.
Horikawa T.
Yasuda N.
Nakamura S.
Toru T.
Shiro M.
Angew.
Chem. Int. Ed.
2008,
47:
4157
<A NAME="RU09810ST-5J">5j</A>
Lee NR.
Kim SM.
Kim DY.
Bull.
Korean Chem. Soc.
2009,
30:
829
<A NAME="RU09810ST-5K">5k</A>
Kang SH.
Kim DY.
Adv.
Synth. Catal.
2010,
352:
2783
For asymmetric Michael-type reactions
of α-fluoromalonates, see:
<A NAME="RU09810ST-6A">6a</A>
Kim DY.
Kim SM.
Koh
KO.
Mang JY.
Bull.
Korean Chem. Soc.
2003,
24:
1425
<A NAME="RU09810ST-6B">6b</A>
Nichols PJ.
DeMattei JA.
Barnett BR.
LeFur
NA.
Chuang T.-H.
Piscopio AD.
Koch K.
Org. Lett.
2006,
8:
1495
<A NAME="RU09810ST-6C">6c</A>
Kwon BK.
Kim SM.
Kim DY.
J. Fluorine Chem.
2009,
130:
759
<A NAME="RU09810ST-6D">6d</A>
Companyo X.
Hejnova M.
Kamlar M.
Vesely J.
Moyano A.
Rios R.
Tetrahedron Lett.
2009,
50:
5051
For asymmetric Michael-type reactions
of α-fluoro-β-keto esters, see:
<A NAME="RU09810ST-7A">7a</A>
Nakamura M.
Hajra A.
Endo K.
Nakamura E.
Angew. Chem. Int. Ed.
2005,
44:
7248
<A NAME="RU09810ST-7B">7b</A>
He R.
Wang X.
Hashimoto T.
Maruoka K.
Angew. Chem. Int. Ed.
2008,
47:
9466
<A NAME="RU09810ST-7C">7c</A>
Mang JY.
Kwon DG.
Kim DY.
J. Fluorine Chem.
2009,
130:
259
<A NAME="RU09810ST-7D">7d</A>
Han X.
Luo J.
Liu C.
Lu Y.
Chem. Commun.
2009,
2044
<A NAME="RU09810ST-7E">7e</A>
Li H.
Zhang S.
Yu C.
Song X.
Wang W.
Chem. Commun.
2009,
2136
<A NAME="RU09810ST-7F">7f</A>
Oh Y.
Kim SM.
Kim DY.
Tetrahedron
Lett.
2009,
50:
4674
<A NAME="RU09810ST-7G">7g</A>
Ishimaru T.
Ogawa S.
Tokunaga E.
Nakamura S.
Shibata N.
J.
Fluorine Chem.
2009,
130:
1049
<A NAME="RU09810ST-7H">7h</A>
Cui H.-F.
Yang Y.-Q.
Chai Z.
Li P.
Zheng C.-W.
Zhu S.-Z.
J.
Org. Chem.
2010,
75:
117
<A NAME="RU09810ST-8A">8a</A>
Fukuzumi T.
Shibata N.
Sugiura M.
Yasui H.
Nakamura S.
Toru T.
Angew.
Chem. Int. Ed.
2006,
45:
4973
<A NAME="RU09810ST-8B">8b</A>
Mizuta S.
Shibata N.
Goto Y.
Furukawa T.
Nakamura S.
Toru T.
J. Am. Chem. Soc.
2007,
129:
6394
<A NAME="RU09810ST-8C">8c</A>
Furukawa T.
Shibata N.
Mizuta S.
Nakamura S.
Toru T.
Shiro M.
Angew. Chem. Int. Ed.
2008,
47:
8051
<A NAME="RU09810ST-8D">8d</A>
Moon HW.
Cho MJ.
Kim DY.
Tetrahedron Lett.
2009,
50:
4896
<A NAME="RU09810ST-8E">8e</A>
Furukawa T.
Goto Y.
Kawazoe J.
Tokunaga E.
Nakamura S.
Yang Y.
Du H.
Kakehi A.
Shiro M.
Shibata N.
Angew.
Chem. Int. Ed.
2010,
49:
1642
For selected recent reviews, see:
<A NAME="RU09810ST-9A">9a</A>
Verkade JMM.
van Hemert LJC.
Quaedflieg PJLM.
Rutjes FPJT.
Chem.
Soc. Rev.
2008,
37:
29
<A NAME="RU09810ST-9B">9b</A>
Ting A.
Schaus SE.
Eur. J. Org. Chem.
2007,
5797
<A NAME="RU09810ST-9C">9c</A>
Marques MMB.
Angew. Chem. Int. Ed.
2006,
45:
348
<A NAME="RU09810ST-9D">9d</A>
Cordova A.
Acc. Chem.
Res.
2004,
37:
102
For selected examples of Mannich-type
reactions of enolates, see:
<A NAME="RU09810ST-10A">10a</A>
Sikert M.
Schneider C.
Angew. Chem. Int. Ed.
2008,
47:
3631
<A NAME="RU09810ST-10B">10b</A>
Itoh J.
Fuchibe K.
Akiyama T.
Synthesis
2008,
1319
<A NAME="RU09810ST-10C">10c</A>
Kobayashi S.
Yazaki R.
Seki K.
Ueno M.
Tetrahedron
2007,
63:
8425
<A NAME="RU09810ST-10D">10d</A>
Saruhashi K.
Kobayashi S.
J. Am. Chem. Soc.
2006,
128:
11232
<A NAME="RU09810ST-10E">10e</A>
Kobayashi S.
Ueno M.
Saito S.
Mizuki Y.
Ishitani H.
Yamashita Y.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5476
<A NAME="RU09810ST-10F">10f</A>
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
<A NAME="RU09810ST-10G">10g</A>
Wenzel AG.
Jacobsen EN.
J.
Am. Chem. Soc.
2002,
124:
12964
<A NAME="RU09810ST-11A">11a</A>
Hamashima Y.
Sasamoto N.
Umebayashi N.
Sodeoka M.
Chem.
Asian J.
2008,
3:
1443
<A NAME="RU09810ST-11B">11b</A>
Chen Z.
Morimoto H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2008,
130:
2170
<A NAME="RU09810ST-11C">11c</A>
Kobayashi S.
Gustafsson T.
Shimizu Y.
Kiyohara H.
Matsubara R.
Org.
Lett.
2006,
8:
4923
<A NAME="RU09810ST-11D">11d</A>
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
<A NAME="RU09810ST-11E">11e</A>
Kim EJ.
Kang YK.
Kim DY.
Bull. Korean Chem. Soc.
2009,
30:
1437
<A NAME="RU09810ST-11F">11f</A>
Kang YK.
Kim DY.
J.
Org. Chem.
2009,
74:
5734
<A NAME="RU09810ST-11G">11g</A>
Lee JH.
Kim DY.
Adv.
Synth. Catal.
2009,
351:
1779
<A NAME="RU09810ST-11H">11h</A>
Lee JH.
Kim DY.
Synthesis
2010,
1860
<A NAME="RU09810ST-12A">12a</A>
Han X.
Kwiatkowski J.
Xue F.
Huang K.-W.
Lu Y.
Angew. Chem. Int. Ed.
2009,
48:
7604
<A NAME="RU09810ST-12B">12b</A>
Jiang Z.
Pan Y.
Zhao Y.
Ma T.
Lee R.
Yang Y.
Huang K.-W.
Wong MW.
Tan C.-H.
Angew. Chem. Int. Ed.
2009,
48:
3627
<A NAME="RU09810ST-12C">12c</A>
Pan Y.
Zhao Y.
Ma T.
Yang Y.
Liu H.
Jiang Z.
Tan C.-H.
Chem. Eur. J.
2010,
16:
779
<A NAME="RU09810ST-13A">13a</A>
Kim DY.
Huh SC.
Kim SM.
Tetrahedron Lett.
2001,
42:
6299
<A NAME="RU09810ST-13B">13b</A>
Kim DY.
Huh SC.
Tetrahedron
2001,
57:
8933
<A NAME="RU09810ST-13C">13c</A>
Park EJ.
Kim MH.
Kim DY.
J. Org. Chem.
2004,
69:
6897
<A NAME="RU09810ST-13D">13d</A>
Kang YK.
Kim DY.
Tetrahedron
Lett.
2006,
47: 4565
<A NAME="RU09810ST-13E">13e</A>
Kang YK.
Cho
MJ.
Kim SM.
Kim DY.
Synlett
2007,
1135
<A NAME="RU09810ST-13F">13f</A>
Cho MJ.
Kang YK.
Lee NR.
Kim DY.
Bull.
Korean Chem. Soc.
2007,
28:
2191
<A NAME="RU09810ST-13G">13g</A>
Kim SM.
Kang YK.
Cho MJ.
Mang JY.
Kim DY.
Bull. Korean Chem. Soc.
2007,
28:
2435
<A NAME="RU09810ST-13H">13h</A>
Lee JH.
Bang HT.
Kim DY.
Synlett
2008,
1821
<A NAME="RU09810ST-13I">13i</A>
Mang JY.
Kim DY.
Bull.
Korean Chem. Soc.
2008,
29:
2091
<A NAME="RU09810ST-13J">13j</A>
Kang YK.
Kim DY.
Bull.
Korean Chem. Soc.
2008,
29:
2093
<A NAME="RU09810ST-13K">13k</A>
Kim DY.
Bull. Korean Chem. Soc.
2008,
29:
2036
<A NAME="RU09810ST-13L">13l</A>
Mang JY.
Kwon DG.
Kim DY.
Bull. Korean Chem. Soc.
2009,
30:
249
<A NAME="RU09810ST-13M">13m</A>
Kang YK.
Kim SM.
Kim DY.
J. Am. Chem. Soc.
2010,
132:
11847
<A NAME="RU09810ST-14A">14a</A>
Kim SM.
Lee JH.
Kim DY.
Synlett
2008,
2659
<A NAME="RU09810ST-14B">14b</A>
Jung SH.
Kim DY.
Tetrahedron
Lett.
2008,
49:
5527
<A NAME="RU09810ST-15">15</A>
Typical General
Procedure for the Mannich-Type Reaction of α-Fluoro-β-keto
Ester 1 with
N
-Boc
Aldimine 2: To a solution of α-fluoro-β-keto
ester 1 (0.3 mmol) and catalyst I (0.03 mmol, 20 mg) in Et2O
(6 mL) was added N-Boc aldimine 2 (0.45 mmol). The reaction mixture was stirred
for 24-36 h. The catalyst I was
removed by short column chromatography (EtOAc-hexane, 1:5).
The crude oil was purified by flash column chromatography (EtOAc-hexane,
1:7) to afford the Mannich adduct 3.
(2
S
,3
S
)-Ethyl 2-Benzoyl-3-(
tert
-butoxycarbonylamino)-2-fluoro-3-(4-chlorophenyl)propanoate
(3c): major diastereomer: [α]²6
D 7.0
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 13.9 Hz, 3 H), 1.39 (s,
9 H), 4.18-4.41 (m, 2 H), 5.45 (d, J = 10.4
Hz, 1 H), 5.87 (dd, J = 28.8,
10.4 Hz, 1 H), 7.35-7.44 (m, 5 H), 7.54-7.58 (m,
2 H), 7.80-7.84 (m, 2 H). ¹³C
NMR (50 MHz, CDCl3): δ = 13.82, 28.15,
56.78 (d, J = 17.7 Hz), 63.32,
80.35, 102.01 (d, J = 204.4
Hz), 128.54, 129.56, 129.81, 130.24 (2), 134.01, 135.12, 154.30,
165.32 (d, J = 26.5 Hz), 190.33
(d, J = 25.7 Hz). HPLC (Chiralpak
IA column; n-hexane-i-PrOH, 85:15; λ = 254
nm, flow rate: 0.5 mL/min); t
R = 23.8
min (minor), t
R = 28.1
min (major); 81% ee.
(2
S
,3
S
)-Ethyl 2-Benzoyl-3-(
tert
-butoxycarbonylamino)-2-fluoro-3-propanoate
(3d): major diastereomer: [α]²9
D 39.3
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.26 (t, J = 13.6 Hz, 3 H), 1.38 (s,
9 H), 4.16-4.39 (m, 2 H), 5.57 (d, J = 10.5
Hz, 1 H), 6.02 (dd, J = 28.8,
10.5 Hz, 1 H), 7.19-7.33 (m, 4 H), 7.36-7.51 (m,
4 H), 7.80-7.83 (m, 2 H). ¹³C NMR
(50 MHz, CDCl3): δ = 13.75, 28.08,
57.38 (d, J = 18.5 Hz), 63.11,
79.97, 102.19 (d, J = 204.0
Hz), 128.01, 128.26, 128.34, 128.74, 129.28, 129.39, 133.69, 136.50,
154.31, 165.38 (d, J = 27.1
Hz), 190.80 (d, J = 25.6 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm,
flow rate: 0.5 mL/min); t
R = 23.5
min (minor), t
R = 31.0 min
(major); 88% ee.
(2
S
,3
S
)-Ethyl 2-Benzoyl-3-(
tert
-butoxycarbonylamino)-2-fluoro-3-(2-chlorophenyl)propanoate
(3e): major diastereomer: [α]²8
D 55.5
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 12.1 Hz, 3 H), 1.39 (s,
9 H), 4.23-4.35 (m, 2 H), 5.55 (d, J = 10.1
Hz, 1 H), 6.47 (dd, J = 26.1,
10.1 Hz, 1 H), 7.10-7.18 (m, 2 H), 7.33-7.55 (m,
5 H), 7.87-7.91 (m, 2 H). ¹³C
NMR (50 MHz, CDCl3): δ = 13.53, 27.88,
53.62 (d, J = 18.7 Hz), 63.02,
79.84, 101.30 (d, J = 205.4
Hz), 126.76, 128.30, 128.85, 129.09, 129.22, 129.85 (2), 133.71,
134.57, 134.97, 153.89, 165.15 (d, J = 26.7
Hz), 190.22 (d, J = 24.9 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254
nm, flow rate: 0.5 mL/min); t
R = 30.4
min (minor), t
R = 51.2
min (major); 86% ee.
(2
S
,3
S
)-Ethyl 2-Benzoyl-3-(
tert
-butoxycarbonylamino)-2-fluoro-3-(furan)propanoate
(3f): major diastereomer: [α]²8
D 35.3
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3):
δ = 1.28
(t, J = 14.0 Hz, 3 H), 1.43
(s, 9 H), 4.18-4.38 (m, 2 H), 5.35 (d, J = 10.7
Hz, 1 H), 6.17 (dd, J = 28.2,
10.7 Hz, 1 H), 6.24-6.26 (m, 2 H), 7.27-7.29 (m,
1 H), 7.38-7.46 (m, 2 H), 7.53-7.60 (m, 1 H),
7.90-7.94 (m, 2 H). ¹³C NMR
(50 MHz, CDCl3): δ = 13.79, 28.15,
52.07 (d, J = 19.7 Hz), 63.24,
80.33, 101.45 (d, J = 204.5
Hz), 108.84, 110.30, 128.51, 129.49, 129.61, 133.90, 142.37, 149.35,
154.32, 164.90 (d, J = 26.6
Hz), 190.39 (d, J = 25.2 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm,
flow rate: 0.5 mL/min); t
R = 20.9
min (minor), t
R = 34.5 min
(major); 98% ee.
(2
S
,3
S
)-Ethyl 2-Benzoyl-3-(
tert
-butoxycarbonylamino)-2-fluoro-3-(thiophene)propanoate
(3g): major diastereomer: [α]²6
D 54.7
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.27 (t, J = 13.9 Hz, 3 H), 1.41 (s,
9 H), 4.17-4.40 (m, 2 H), 5.36 (d, J = 10.4
Hz, 1 H), 6.31 (dd, J = 28.3,
10.4 Hz, 1 H), 6.86-6.90 (m, 1 H), 7.06-7.08 (m,
1 H), 7.16-7.18 (m, 1 H), 7.36-7.44 (m, 2 H),
7.51-7.59 (m, 1 H), 7.89-7.93 (m, 2 H). ¹³C
NMR (50 MHz, CDCl3): δ = 13.74, 28.10,
53.53 (d, J = 19.35 Hz), 63.12,
80.27, 101.92 (d, J = 204.2
Hz), 125.53, 126.56, 127.18, 128.46, 129.45, 129.56, 133.91, 138.75,
154.11, 164.96 (d, J = 26.9
Hz), 190.34 (d, J = 25.3 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 90:10; λ = 254
nm, flow rate: 0.5 mL/min); t
R = 30.9 min
(minor), t
R = 44.4
min (major); 95% ee.
(2
S
,3
S
)-Ethyl 2-(4-Nitrobenzoyl)-3-(
tert
-butoxy-carbonylamino)-2-fluoro-3-(furan)propanoate
(3h): major diastereomer: [α]³¹
D 19.7
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.31 (t, J = 14.4 Hz, 3 H), 1.44 (s,
9 H), 4.20-4.41 (m, 2 H), 5.36 (d, J = 10.2
Hz, 1 H), 6.15 (dd, J = 28.2,
10.2 Hz, 1 H), 6.27-6.31 (m, 2 H), 7.30 (m, 1 H), 8.01-8.06
(m, 2 H), 8.24-8.28 (m, 2 H). ¹³C
NMR (50 MHz, CDCl3): δ = 13.83, 28.16,
52.21 (d, J = 19.3 Hz), 63.69, 80.67,
101.58 (d, J = 204.4 Hz), 109.13,
110.48, 123.62, 130.64, 138.59, 142.66, 148.90, 150.51, 154.30,
164.15 (d,
J = 26.7
Hz), 189.96 (d, J = 25.7 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254
nm, flow rate: 0.5 mL/min); t
R = 26.8
min (minor), t
R = 45.6
min (major); 98% ee.
(2
S
,3
S
)-Ethyl 2-[4-(Trifluoromethyl)phenyl]-3-(
tert
-butoxycarbonylamino)-2-fluoro-3-(furan)propanoate (3i):
major diastereomer: [α]³0
D 26.0
(c = 1.0, CHCl3). ¹H NMR
(200 MHz, CDCl3): δ = 1.30 (t, J = 14.5 Hz, 3 H), 1.44 (s,
9 H), 4.20-4.40 (m, 2 H), 5.35 (d, J = 10.5
Hz, 1 H), 6.17 (dd, J = 28.4,
10.5 Hz, 1 H), 6.25-6.27 (m, 2 H), 7.27-7.29 (m,
1 H), 7.67-7.71 (m, 2 H), 7.99-8.03 (m, 2 H). ¹³C
NMR (50 MHz, CDCl3): δ = 13.79, 28.14,
52.14 (d, J = 19.2 Hz), 63.51,
80.53, 101.54 (d, J = 204.5
Hz), 109.01, 110.39, 123.35 (q, J = 271.5
Hz), 125.55, 129.80, 134.94 (q, J = 32.5 Hz),
136.66, 142.55, 149.07, 154.31, 164.42 (d, J = 26.6
Hz), 189.56 (d, J = 29.0 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254
nm, flow rate: 0.5 mL/min); t
R = 15.7
min (minor), t
R = 28.5
min (major); 96% ee.
(2
S
,3
S
)-Ethyl 2-(4-Methoxybenzoyl)-3-(
tert
-butoxy-carbonylamino)-2-fluoro-3-(furan)propanoate
(3j): major diastereomer: [α]³0
D 19.1
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.26 (t, J = 13.9 Hz, 3 H), 1.43 (s,
9 H), 3.84 (s, 3 H), 4.16-4.36 (m, 2 H), 5.36 (d, J = 10.5 Hz, 1 H), 6.16 (dd, J = 28.3, 10.5 Hz, 1 H), 6.23-6.25
(m, 2 H), 6.86-6.93 (m, 2 H), 7.79 (m, 1 H), 7.95-8.00
(m, 2 H).
¹³C NMR (50 MHz,
CDCl3): δ = 13.74, 28.10, 51.96 (d, J = 19.5 Hz), 55.42, 63.06,
80.19, 101.50 (d, J = 204.4
Hz), 108.70, 110.24, 113.79, 126.60, 132.25, 142.22, 149.57, 154.31,
164.18, 165.20 (d, J = 26.9
Hz), 188.24 (d, J = 24.3 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254
nm, flow rate: 0.5 mL/min); t
R = 26.6
min (minor),
t
R = 49.6
min (major); 96% ee.
(2
S
,3
S
)-Ethyl 2-(4-Bromobenzoyl)-3-(
tert
-butoxy-carbonylamino)-2-fluoro-3-(furan)propanoate
(3k): major diastereomer: [α]³¹
D 21.1
(c = 1.0, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 14.0 Hz, 3 H), 1.43 (s,
9 H), 4.19-4.37 (m, 2 H), 5.32 (d, J = 10.1
Hz, 1 H), 6.14 (dd, J = 28.4,
10.1 Hz, 1 H), 6.23-6.31 (m, 2 H), 7.27-7.29 (m,
1 H), 7.54-7.59 (m, 2 H), 7.78-7.81 (m, 2 H). ¹³C
NMR (50 MHz, CDCl3): δ = 13.81, 28.16,
52.08 (d, J = 19.3 Hz), 63.40,
80.45, 101.51 (d, J = 204.1
Hz), 108.93, 110.36, 129.47, 131.00, 131.92, 132.48, 142.46, 149.22,
154.31, 164.68 (d, J = 27.9
Hz), 189.64 (d, J = 25.5 Hz).
HPLC (Chiralpak IA column; n-hexane-i-PrOH, 90:10; λ = 254 nm,
flow rate: 0.5 mL/min); t
R = 24.7
min (minor), t
R = 55.2 min
(major); 98% ee.