Synlett 2011(2): 273-279  
DOI: 10.1055/s-0030-1259290
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Novel Arylations of Cyclic β-Bromo α,β-Unsaturated Aldehydes with Triarylbismuths as Multicoupling Organometallic Nucleo­philes

Maddali L. N. Rao*, Debasis Banerjee, Ritesh J. Dhanorkar
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
Fax: +91(512)2597532; e-Mail: maddali@iitk.ac.in;
Further Information

Publication History

Received 13 August 2010
Publication Date:
23 December 2010 (online)

Abstract

Cross-coupling arylations of cyclic β-bromo α,β -unsaturated aldehydes were carried out with triarylbismuths as atom-­efficient multicoupling organometallic reagents under palladium-catalyzed conditions. These reactions afforded the corresponding arylated alkenes in an efficient manner with good to high yields.

    References and Notes

  • 1a Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442 
  • 1b Hassan J. Sevignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 1c Kotha S. Lahiri K. Kashinath D. Tetrahedron  2002,  58:  9633 
  • 1d Roglans A. Pla-Quintana A. Moreno-Mañas M. Chem. Rev.  2006,  106:  4622 
  • 1e Yin L. Liebscher J. Chem. Rev.  2007,  107:  133 
  • 1f Corbet J.-P. Mignani G. Chem. Rev.  2006,  106:  2651 
  • 1g Rouhi AM. Chem. Eng. News  2004,  82(36):  49 
  • 2a Ray D. Ray JK. Org. Lett.  2007,  9:  191 
  • 2b Jakobs AE. Christiaens L. J. Org. Chem.  1996,  61:  4842 
  • 2c Hesse S. Kirsch G. Tetrahedron Lett.  2003,  44:  97 
  • 2d Otero MP. Torrado A. Pazos Y. Sussman F. de Lera AR. J. Org. Chem.  2002,  67:  5876 
  • 2e Balsamo A. Coletta I. Domiano P. Guglielmotti A. Landolfi C. Mancini F. Milanese C. Orlandini E. Rapposelli S. Pinza M. Macchia B. Eur. J. Med. Chem.  2002,  37:  391 
  • 2f LaFrate AL. Gunther JR. Carlson KE. Katzenellenbogen JA. Bioorg. Med. Chem.  2008,  16:  10075 
  • 2g Rück-Braun K. Möller C. Chem. Eur. J.  1999,  5:  1038 
  • For cross-coupling and polycyclic heteroarene, see:
  • 3a Fürstner A. Mamane V. J. Org. Chem.  2002,  67:  6264 
  • 3b Mamane V. Hannen P. Fürstner A. Chem. Eur. J.  2004,  10:  4556 
  • 3c Hesse S. Kirsch G. Synthesis  2001,  755 
  • 3d Pathak R. Vandayar K. van Otterlo WAL. Michael JP. Fernandes MA. de Koning CB. Org. Biomol. Chem.  2004,  2:  3504 
  • 3e Jana R. Chatterjee I. Samanta S. Ray JK. Org. Lett.  2008,  10:  4795 
  • 3f Some S. Dutta B. Ray JK. Tetrahedron Lett.  2006,  47:  1221 
  • 3g Hesse S. Kirsch G. Tetrahedron Lett.  2002,  43:  1213 
  • 3h Knobloch K. Keller M. Eberbach W. Eur. J. Org. Chem.  2001,  3313 
  • 3i Gilchrist TL. Summersell RJ. J. Chem. Soc., Perkin Trans. 1  1988,  2595 
  • For quinolines and related heterocycles, see:
  • 4a Banwell MG. Lupton DW. Ma X. Renner J. Sydnes MO. Org. Lett.  2004,  6:  2741 
  • 4b Some S. Ray JK. Banwell MG. Jones MT. Tetrahedron Lett.  2007,  48:  3609 
  • 4c Gilchrist TL. Healy MAM. Tetrahedron  1993,  49:  2543 
  • 5a Bekele T. Brunette SR. Lipton MA. J. Org. Chem.  2003,  68:  8471 
  • 5b Wang KK. Liu B. Lu Y.-D. Tetrahedron Lett.  1995,  36:  3785 
  • 5c Nakatani K. Isoe S. Maekawa S. Saito I. Tetrahedron Lett.  1994,  35:  605 
  • 5d Piers E. Romero MA. Walker SD. Synlett  1999,  1082 
  • 5e Kitagaki S. Katoh K. Ohdachi K. Takahashi Y. Shibata D. Mukai C. J. Org. Chem.  2006,  71:  6908 
  • 5f Salem B. Delort E. Klotz P. Suffert J. Org. Lett.  2003,  5:  2307 
  • 5g Salem B. Klotz P. Suffert J. Org. Lett.  2003,  5:  845 
  • 5h Lin M.-Y. Das A. Liu R.-S. J. Am. Chem. Soc.  2006,  128:  9340 
  • 5i Waddell MK. Bekele T. Lipton MA. J. Org. Chem.  2006,  71:  8372 
  • 6a Despotopoulou C. Bauer RC. Krasovskiy A. Mayer P. Stryker JM. Knochel P. Chem. Eur. J.  2008,  14:  2499 
  • 6b Knochel P. Rao CJ. Tetrahedron  1993,  49:  29 
  • 7a Rao MLN. Jadhav DN. Dasgupta P. Org. Lett.  2010,  12:  2048 
  • 7b Rao MLN. Venkatesh V. Jadhav DN. Eur. J. Org. Chem.  2010,  3945 
  • 7c Rao MLN. Jadhav DN. Venkatesh V. Eur. J. Org. Chem.  2009,  4300 
  • 7d Rao MLN. Banerjee D. Giri S. J. Organomet. Chem.  2010,  695:  1518 
  • 7e Rao MLN. Banerjee D. Dhanorkar RJ. Tetrahedron  2010,  66:  3623 
  • 7f Rao MLN. Banerjee D. Giri S. Tetrahedron Lett.  2009,  50:  5757 
  • 7g Rao MLN. Jadhav DN. Venkatesh V. Tetrahedron Lett.  2009,  50:  4268 
  • 7h Rao MLN. Jadhav DN. Banerjee D. Tetrahedron  2008,  64:  5762 
  • 7i Rao MLN. Venkatesh V. Jadhav DN. J. Organomet. Chem.  2008,  693:  2494 
  • 7j Rao MLN. Venkatesh V. Banerjee D. Tetrahedron  2007,  63:  12917 
  • 7k Rao MLN. Banerjee D. Jadhav DN. Tetrahedron Lett.  2007,  48:  6644 
  • 7l Rao MLN. Banerjee D. Jadhav DN. Tetrahedron Lett.  2007,  48:  2707 
  • 7m Rao MLN. Venkatesh V. Jadhav DN. Tetrahedron Lett.  2006,  47:  6975 
  • 8 Barton DHR. Ozbalik N. Ramesh M. Tetrahedron  1988,  44:  5661 
  • 11 Moleele SS. Michael JP. de Koning CB. Tetrahedron  2006,  62:  2831 
  • 12 . Raghunandan R. Maulik PR. Panda G. Tetrahedron Lett.  2005,  46:  5337 
  • For mechanistic, see:
  • 13a Scott WJ. Stille JK. J. Am. Chem. Soc.  1986,  108:  3033 
  • 13b Jutand A. Mosleh A. Organometallics  1995,  14:  1810 
  • 13c Jutand A. Négri S. Organometallics  2003,  22:  4229 
9

Representative Procedure: An oven-dried Schlenk tube under a nitrogen atmosphere was charged with 1-bromo-3,4-dihydronaphthalene-2-carbaldehyde (0.825 mmol, 0.196 g) followed by triphenylbismuth (0.25 mmol, 0.11 g), K3PO4 (0.50 mmol, 0.106 g), PdCl2(PPh3)2 (0.0225 mmol, 0.0158 g) and anhyd DMF (3 mL). The reaction mixture was stirred in an oil bath at 90 ˚C for 1 h. Then the contents were cooled to r.t. and the reaction was quenched with H2O (10 mL) and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with H2O (2 × 10 mL), brine (10 mL), dried over anhyd MgSO4 and concentrated. The crude product mixture thus obtained was purified by silica gel column chromatography using 1% EtOAc-petroleum ether as eluent to obtain 1-phenyl-3,4-dihydronaphthale-2-carbaldehyde(2a) as a pale yellow solid (0.169 g, 96%). All the products were characterized by ¹H NMR, ¹³C NMR, IR spectroscopic data and HRMS (ESI).

10

In all the coupling reactions, 0.3 equiv of bromoaldehydes was employed in excess. However, the product yields were calculated based on the three couplings from triaryl-bismuths. Thus, 0.75 mmol of the cross-coupled product corresponds to 100% yield.