Synlett 2010(20): 3053-3056  
DOI: 10.1055/s-0030-1259069
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Effects of a Flexible Alkyl Chain on an Imidazole Ligand for Copper-Catalyzed Mannich Reactions of Terminal Alkynes

Takaaki Okamura, Keisuke Asano, Seijiro Matsubara*
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoutodaigaku-katsura,Nishikyo, Kyoto 615-8510, Japan
Fax: +81(75)3832459; e-Mail: matsubar@orgrxn.mbox.media.kyoto-u.ac.jp;
Further Information

Publication History

Received 15 October 2010
Publication Date:
24 November 2010 (online)

Abstract

Copper-catalyzed Mannich reactions of terminal alkynes and secondary amines with aqueous formaldehyde can be accelerated by the use of a catalytic amount of an imidazole ligand carrying a long alkyl chain. The alkyl chain shows an efficient steric effect and helps the reaction. This imidazole ligand is efficient for various substrates, including even bulky alkynes.

    References and Notes

  • 1a Israelachvili JN. Mitchell DJ. Ninham BW. J. Chem. Soc., Faraday Trans. 2  1976,  72:  1525 
  • 1b Holbrey JD. Seddon KR. J. Chem. Soc., Dalton Trans.  1999,  2133 
  • 2 Asano K. Matsubara S. Org. Lett.  2010,  12:  4988 
  • 3 Malcolmson SJ. Meek SJ. Sattely ES. Schrock RR. Hoveyda AH. Nature (London)  2008,  456:  933 
  • 4a Asano K. Matsubara S. Org. Lett.  2009,  11:  1757 
  • 4b Asano K. Matsubara S. Synlett  2009,  35 
  • 4c Asano K. Matsubara S. Synthesis  2009,  3219 
  • 4d Güntensperger M. Zuberbühler AD. Helv. Chim. Acta  1977,  60:  2584 
  • 4e Asano K. Matsubara S. Heterocycles  2010,  80:  989 
  • Copper(I)-imidazole systems have been well studied and shown to form a stable complex with an affinity for π-acceptor compounds, see:
  • 5a Kitagawa S. Munakata M. Bull. Chem. Soc. Jpn.  1986,  59:  2743 
  • 5b Kitagawa S. Munakata M. Bull. Chem. Soc. Jpn.  1986,  59:  2751 
  • 5c Gaykema WPJ. Hol WGJ. Vereijken JM. Soeter NM. Bak HJ. Beintema JJ. Nature (London)  1984,  309:  23 
  • 5d Linzen B. Soeter NM. Riggs AF. Schneider H.-J. Schartau W. Moore MD. Yokota E. Behrens PQ. Nakashima H. Takagi T. Nemoto T. Vereijken JM. Bak HJ. Beintema JJ. Volbeda A. Gaykema WPJ. Hol WGJ. Science  1985,  229:  519 
  • 6a Hayashi Y. Aratake S. Okano T. Takahashi J. Sumiya T. Shoji M. Angew. Chem. Int. Ed.  2006,  45:  5527 
  • 6b Mase N. Nakai Y. Ohara N. Yoda H. Takabe K. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2006,  128:  734 
  • 6c Manabe K. Sun X.-M. Kobayashi S. J. Am. Chem. Soc.  2001,  123:  10101 
  • 7a Mannich C. Chang FT. Ber. Dtsch. Chem. Ges.  1933,  66:  418 
  • 7b Tramontini M. Synthesis  1973,  703 
  • 7c Tramontini M. Angiolini L. Tetrahedron  1990,  46:  1791 
  • 8a Karlén B. Lindeke B. Lindgren S. Svensson K.-G. Dahlbom R. Jenden DJ. Giering JE. J. Med. Chem.  1970,  13:  651 
  • 8b Simon DZ. Salvador RL. Champagne G. J. Med. Chem.  1970,  13:  1249 
  • 8c Adams TC. Dupont AC. Carter JP. Kachur JF. Guzewska ME. Rzeszotarski WJ. Farmer SG. Noronha-Blob L. Kaiser C. J. Med. Chem.  1991,  34:  1585 
  • 8d Nilsson BM. Vargas HM. Ringdahl B. Hacksell U. J. Med. Chem.  1992,  35:  285 
  • 8e Sanders KB. Thomas AJ. Pavia MR. Davis RE. Coughenour LL. Myers SL. Fisher S. Moos WH. Bioorg. Med. Chem. Lett.  1992,  2:  803 
  • 8f Musso DL. Clarke MJ. Kelley JL. Boswell GE. Chen G. Org. Biomol. Chem.  2003,  1:  498 
  • 9a Hattori K. Miyata M. Yamamoto H. J. Am. Chem. Soc.  1993,  115:  1151 
  • 9b Boys ML. Tetrahedron Lett.  1998,  39:  3449 
  • 9c Craig JC. Ekwuribe NN. Tetrahedron Lett.  1980,  21:  2587 
  • 9d Nakamura H. Kamakura T. Ishikura M. Biellman J.-F. J. Am. Chem. Soc.  2004,  126:  5958 
  • 9e Nakamura H. Ishikura M. Sugiishi T. Kamakura T. Biellman J.-F. Org. Biomol. Chem.  2008,  6:  1471 
  • 9f Tabei J. Nomura R. Masuda T. Macromolecules  2002,  35:  5405 
  • 9g Gao G. Sanda F. Masuda T. Macromolecules  2003,  36:  3932 
  • 9h Crabbé P. Fillion H. André D. Luche J.-L. J. Chem. Soc., Chem. Commun.  1979,  859 
  • 9i Kuang J. Ma S. J. Org. Chem.  2009,  74:  1763 
  • 9j Kuang J. Ma S. J. Am. Chem. Soc.  2010,  132:  1786 
  • 9k Ohno H. Ohta Y. Oishi S. Fujii N. Angew. Chem. Int. Ed.  2007,  46:  2295 
  • 9l Suzuki Y. Ohta Y. Oishi S. Fujii N. Ohno H. J. Org. Chem.  2009,  74:  4246 
  • 9m Ohta Y. Kubota Y. Watabe T. Chiba H. Oishi S. Fujii N. Ohno H. J. Org. Chem.  2009,  74:  6299 
  • 10a Kabalka GW. Wang L. Pagni RM. Synlett  2001,  676 
  • 10b Sharifi A. Farhangian H. Mohsenzadeh F. Naimi-Jamal MR. Monatsh. Chem.  2002,  133:  199 
  • 10c Bieber LW. da Silva MF. Tetrahedron Lett.  2004,  45:  8281 
  • 10d Kabalka GW. Zhou L.-L. Wang L. Pagni RM. Tetrahedron  2006,  62:  857 
  • 10e Sharifi A. Mirzaei M. Naimi-Jamal MR. J. Chem. Res.  2007,  129 
  • 11a Wang M. Li P. Wang L. Eur. J. Org. Chem.  2008,  2255 
  • 11b Li P. Wang L. Tetrahedron  2007,  63:  5455 
  • 12 Stephens RD. Castro CE. J. Org. Chem.  1963,  28:  3313 
  • 13a Asano Y. Hara K. Ito H. Sawamura M. Org. Lett.  2007,  9:  3901 
  • 13b Asano Y. Ito H. Hara K. Sawamura M. Organometallics  2008,  27:  5984 
  • 14a Li C.-J. Chan T.-H. In Organic Reactions in Aqueous Media   John Wiley and Sons; New York: 1997. 
  • 14b Li C.-J. Acc. Chem. Res.  2010,  43:  581 
  • 14c Chen L. Li C.-J. Adv. Synth. Catal.  2006,  348:  1459 
  • 15a Kobayashi S. Chem. Lett.  1991,  2187 
  • 15b Kobayashi S. Hachiya I. J. Org. Chem.  1994,  59:  3590 
  • 17 Dureen MA. Stephan DW. J. Am. Chem. Soc.  2009,  131:  8396 
16

Similar investigations corresponding to Table  [³] were also performed with 4c and 4d, which carry alkyl chains of other lengths; also in those cases, a drastic acceleration such as occurred in the case of 4e was not observed.

18

General Procedure for Mannich Reactions of Terminal Alkynes and Secondary Amines with Formaldehyde
To a 5 mL vial were added sequentially terminal alkyne 1 (1.0 mmol), secondary amine 2 (1.0 mmol), formaldehyde (37% aq solution, 1.2 mmol), 1-hexadecylimidazole (4e, 0.01 mmol), and CuI (0.005 mmol, 1.0 mg). The mixture was stirred in an oil bath kept at 25 ˚C for 1.5 h. The mixture was diluted with EtOAc, dried (anhyd Na2SO4), and concentrated in vacuo. Purification by flash column chromatography (silica gel, hexane-EtOAc) gave the corresponding propargylamine 3.
1-(3-Phenylprop-2-yn-1-yl)piperidine (3aa)
CAS [2568-57-2]. Orange oil. ¹H NMR (500 MHz, CDCl3): δ = 7.43 (m, 2 H), 7.30-7.27 (m, 3 H), 3.48 (s, 2 H), 2.57 (br s, 4 H), 1.64 (tt, J = 5.5, 6.0 Hz, 4 H), 1.45 (br s, 2 H). ¹³C NMR (125,7 MHz, CDCl3): δ = 131.7, 128.2, 127.9, 123.3, 85.1, 84.9, 53.5, 48.5, 26.0, 23.9.

19

The reactions of dibutylamine and dicyclohexylamine could be performed to afford the corresponding products quantitatively even without any ligand.