Synlett 2010(17): 2611-2616  
DOI: 10.1055/s-0030-1258803
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Easy and Efficient Copper-Catalyzed Synthesis of Bicyclic Pyrimidinones under Mild Conditions

Qi Guoa, Haijun Yanga, Hongxia Liub, Yuyang Jiangb, Hua Fu*a
a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
b Key Laboratory of Chemical Biology, Guangdong Province, College of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. of China
Fax: +86(10)62781695; e-Mail: fuhua@mail.tsinghua.edu.cn;
Further Information

Publication History

Received 22 July 2010
Publication Date:
30 September 2010 (online)

Abstract

A simple and efficient copper-catalyzed method has been developed for synthesis of bicyclic pyrimidinones containing six-, seven-, eight-membered rings under mild conditions. The protocol uses readily available 2-bromocycloalk-1-enecarboxylic acids, amidines, and guanidines as the starting materials, copper-catalyzed cascade couplings provide the corresponding bicyclic ­pyrimidinones without addition of any ligand or additive, and the method is of economical and practical advantages.

    References and Notes

  • For reviews, see:
  • 1a Undheim K. Benneche T. In Comprehensive Heterocyclic Chemistry II   Vol. 6:  Katritzky AR. Rees CW. Scriven EFV. McKillop A. Pergamon; Oxford: 1996.  p.93 
  • 1b Lagoja IM. Chemistry & Biodiversity  2005,  2:  1 
  • 1c Michael JP. Nat. Prod. Rep.  2005,  22:  627 
  • 1d Joule JA. Mills K. In Heterocyclic Chemistry   4th ed.:  Blackwell Science Ltd.; Cambridge USA: 2000.  p.194 
  • 1e Erian AW. Chem. Rev.  1993,  93:  1991 
  • 3 Markowitz M. Morales-Ramirez JO. Nguyen BY. Kovacs CM. Steigbigel RT. Cooper DA. Liporace R. Schwartz R. Isaacs R. Gilde LR. Penning L. Zhao J. Teppler H. J. Acquir. Immune Defic. Syndr.  2006,  43:  509 
  • 4a Hazuda DJ. Felock P. Witmer M. Wolfe A. Stillmock K. Grobler JA. Espeseth A. Gabryelski L. Schleif W. Blau C. Miller MD. Science  2000,  287:  646 
  • 4b Hazuda DJ. Young SD. Guare JP. Anthony NJ. Gomez RP. Wai JS. Vacca JP. Handt L. Motzel SL. Klein HJ. Dornadula G. Danovich RM. Witmer MV. Wilson KA. Tussey L. Schleif WA. Gabryelski LS. Jin L. Miller MD. Casimiro DR. Emini EA. Shiver JW. Science  2004,  305:  528 
  • 5 Muraglia E. Kinzel O. Gardelli C. Crescenzi B. Donghi M. Ferrara M. Nizi E. Orvieto F. Pescatore G. Laufer R. Gonzalez-Paz O. Marco AD. Fiore F. Monteagudo E. Fonsi M. Felock PJ. Rowley M. Summa V. J. Med. Chem.  2008,  51:  861 
  • 6a Gangjee A. Vasudevan A. Kisliuk RL. J. Heterocycl. Chem.  1997,  34:  1669 
  • 6b Bernáth G. Kóbor J. Lázár J. Fülöp F. J. Heterocycl. Chem.  1996,  33:  1983 
  • 6c Bernáth G. Janáky T. Göndös G. Lázár J. Ecsery Z. Pharmazie  1983,  38:  270 
  • 6d Nishio T. Fujisawa M. Omote Y.
    J. Chem. Soc., Perkin Trans. 1  1987,  2523 
  • 7a Sekiya T. Hiranuma H. Uchide M. Hata S. Yamada S. Chem. Pharm. Bull.  1981,  29:  948 
  • 7b Claudi F. Giorgioni G. Scoccia L. Ciccocioppo R. Panocka I. Massi M. Eur. J. Med. Chem.  1997,  651 
  • 8 Nair MG. Dhawan R. Ghazala M. Kalman TI. Ferone R. Gaumont Y. Kisliuk RL. J. Med. Chem.  1987,  30:  1256 
  • 9 Rosowsky A. Forsch RA. Moran RG. J. Med. Chem.  1989,  32:  709 
  • 10 Ishida J. Hattori K. Yamamoto H. Iwashita A. Miharab K. Matsuoka N. Bioorg. Med. Chem. Lett.  2005,  15:  4221 
  • 11a Kawamura S. Sanemitsu Y. J. Org. Chem.  1993,  58:  414 
  • 11b Fülöp F. Bernáth G. Synthesis  1985,  1148 
  • 11c Ferrara M. Crescenzi B. Donghi M. Muraglia E. Nizi E. Pesci S. Summa V. Gardelli C. Tetrahedron Lett.  2007,  48:  8379 
  • 12a Limbach M. Dalai S. de Meijere A. Adv. Synth. Catal.  2004,  346:  760 
  • 12b Nötzel MW. Rauch K. Labahn T. de Meijere A. Org. Lett.  2002,  4:  839 
  • 12c Dalai S. Belov VN. Nizamov S. Rauch K. Finsinger D. de Meijere A. Eur. J. Org. Chem.  2006,  2753 
  • For recent reviews on copper-catalyzed Ullmann couplings, see:
  • 13a Ma D. Cai Q. Acc. Chem. Res.  2008,  41:  1450 
  • 13b Kunz K. Scholz U. Ganzer D. Synlett  2003,  2428 
  • 13c Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 13d Beletskaya IP. Cheprakov AV. Coord. Chem. Rev.  2004,  248:  2337 
  • 13e Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 13f Monnier F. Taillefer M. Angew. Chem. Int. Ed.  2009,  48:  6954 ; and references cited therein
  • For recent studies on the synthesis of N-heterocycles through Ullmann-type couplings, see:
  • 14a Martin R. Rivero MR. Buchwald SL. Angew. Chem. Int. Ed.  2006,  45:  7079 
  • 14b Evindar G. Batey RA. J. Org. Chem.  2006,  71:  1802 
  • 14c Bonnaterre F. Bois-Choussy M. Zhu J. Org. Lett.  2006,  8:  4351 
  • 14d Zou B. Yuan Q. Ma D. Angew. Chem. Int. Ed.  2007,  46:  2598 
  • 14e Yuan X. Xu X. Zhou X. Yuan J. Mai L. Li Y. J. Org. Chem.  2007,  72:  1510 
  • 14f Lu H. Li C. Org. Lett.  2006,  8:  5365 
  • 15a Jiang D. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2007,  72:  672 
  • 15b Jiang Q. Jiang D. Jiang Y. Fu H. Zhao Y. Synlett  2007,  1836 
  • 16a Shafir A. Buchwald SL. J. Am. Chem. Soc.  2006,  128:  8742 
  • 16b Wang D. Ding K. Chem. Commun.  2009,  1891 
  • 17a Rao H. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2005,  70:  8107 
  • 17b Rao H. Jin Y. Fu H. Jiang Y. Zhao Y. Chem. Eur. J.  2006,  12:  3636 
  • 17c Jiang D. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2007,  72:  672 
  • 17d Guo X. Rao H. Fu H. Jiang Y. Zhao Y. Adv. Synth. Catal.  2006,  348:  2197 
  • 17e Zeng L. Fu H. Qiao R. Jiang Y. Zhao Y. Adv. Synth. Catal.  2009,  351:  1671 
  • 17f Gao X. Fu H. Qiao R. Jiang Y. Zhao Y. J. Org. Chem.  2008,  73:  6864 
  • 18a Huang C. Fu Y. Fu H. Jiang Y. Zhao Y. Chem. Commun.  2008,  6333 
  • 18b Yang D. Fu H. Hu L. Jiang Y. Zhao Y. J. Org. Chem.  2008,  73:  7841 
  • 18c Wang F. Liu H. Fu H. Jiang Y. Zhao Y. Org. Lett.  2009,  11:  2469 
  • 18d Yang D. Liu H. Yang H. Fu H. Hu L. Jiang Y. Zhao Y. Adv. Synth. Catal.  2009,  351:  1999 
  • 18e Gong X. Yang H. Liu H. Jiang Y. Zhao Y. Fu H. Org. Lett.  2010,  12:  3128 
  • 18f Liu X. Fu H. Jiang Y. Zhao Y. Angew. Chem. Int. Ed.  2009,  48:  348 
  • 20a Nicolaou KC. Boddy CNC. Natarajar S. Yue T.-Y. Li H. Bräse S. Ramanjulu JM. J. Am. Chem. Soc.  1997,  119:  3421 
  • 20b Lindley J. Tetrahedron  1984,  40:  1433 
  • 20c Kalinin AV. Bower JF. Riebel P. Snieckus V. J. Org. Chem.  1999,  64:  2986 
  • 20d Cai Q. Zou B. Ma D. Angew. Chem. Int. Ed.  2006,  45:  1276 
  • 21 Flanagan SP. Goddard R. Guiry PJ. Tetrahedron  2005,  61:  9808 
2

Raltegravir has been approved by the FDA for the treatment of HIV/AIDS under the trademark ISENTRESS.

19

General Procedure for the Synthesis of Compounds 3a-s A two-neck round-bottom flask was charged with a magnetic stirrer, evacuated and backfilled with nitrogen. Amidine hydrochloride or guanidine hydrochloride 2a-f (0.6 mmol) or bis(guanidine)sulfate (2g, 0.35 mmol), CuI (0.05 mmol, 9.5 mg), Cs2CO3 (1 mmol, 326 mg), and DMF (1 mL) were added under nitrogen atmosphere. After a 15 min stirring, 2-bromocycloalk-1-enecarboxylic acid (1, 0.5 mmol) was added to the flask. The mixture was allowed to stir under nitrogen atmosphere at the shown temperature for some time (see Table  [²] ). After completion of the reaction, the mixture was concentrated with the aid of a rotary evaporator. The residue was purified by column chroma-tography on silica gel using PE-EtOAc or CH2Cl2-MeOH as eluent to provide the desired product.