References
<A NAME="RD20910ST-1A">1a</A>
Tarus PK.
Coombes PH.
Crouch NR.
Mulholland DA.
Moodley B.
Phytochemistry
2005,
66:
703
<A NAME="RD20910ST-1B">1b</A>
Al-Rehaily AJ.
Ahmad MS.
Muhammad I.
Al-Thukair AA.
Perzanowski HP.
Phytochemistry
2003,
64:
1405
<A NAME="RD20910ST-1C">1c</A>
Naidoo D.
Coombes PH.
Mulholland DA.
Crouch NR.
Van
den Bergh AJJ.
Phytochemistry
2005,
66:
1724
<A NAME="RD20910ST-1D">1d</A>
Wansi JD.
Wandi J.
Meva’a LM.
Waffo
AFK.
Ranjit R.
Khan SN.
Asma A.
Iqbal CM.
Lallemand M.-C.
Tillequin F.
Fomum Tanee Z.
Chem. Pharm.
Bull.
2006,
54:
292
<A NAME="RD20910ST-1E">1e</A>
Waffo AFK.
Coombes PH.
Crouch NR.
Mulholland DA.
El Amin SMM.
Smith PJ.
Phytochemistry
2007,
68:
663
<A NAME="RD20910ST-1F">1f</A>
Kumar S.
Raj K.
Khare P.
Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2009,
48:
291
<A NAME="RD20910ST-2">2</A>
Tabarrini O.
Cecchetti V.
Fravolini A.
Nocentini G.
Barzi A.
Sabatini S.
Miao H.
Sissi C.
J. Med. Chem.
1999,
42:
2136
<A NAME="RD20910ST-3A">3a</A>
Basco KL.
Mitaku S.
Skaltsounis A.-L.
Ravelomanantsoa N.
Tillequin F.
Koch M.
Le Bras J.
Antimicrob. Agents
Chemother.
1994,
38:
1169
<A NAME="RD20910ST-3B">3b</A>
Winter RW.
Kelly JX.
Smilkstein MJ.
Dodean R.
Bagby GC.
Rathbun RK.
Levin JI.
Hinrichs D.
Riscoe MK.
Exp. Parasitol.
2006,
114:
47
<A NAME="RD20910ST-3C">3c</A>
Kelly JX.
Smilkstein MJ.
Cooper RA.
Lane KD.
Johnson RA.
Janowsky A.
Dodean RA.
Hinrichs DJ.
Winter R.
Riscoe M.
Antimicrob. Agents Chemother.
2007,
51:
4133
<A NAME="RD20910ST-4">4</A>
Demeunynck M.
Charmantray F.
Martelli A.
Curr. Pharm.
Design
2001,
7:
1703
<A NAME="RD20910ST-5A">5a</A>
Boumendjel A.
Macalou S.
Ahmed-Belkacem A.
Blanc M.
Di Pietro A.
Bioorg. Med. Chem.
2007,
15:
2892
<A NAME="RD20910ST-5B">5b</A>
Gopinath VS.
Thimmaiah P.
Thimmaiah KN.
Bioorg. Med. Chem.
2008,
16:
474
<A NAME="RD20910ST-5C">5c</A>
Bhonde M.
Padgaonkar A.
Deore V.
Yewalkar N.
Bhatia D.
Rathos M.
Joshi K.
Vishwakarma RA.
Kumar S.
Bioorg.
Med. Chem. Lett.
2008,
18:
3603
<A NAME="RD20910ST-6A">6a</A>
Kawaii S.
Tomono Y.
Katase E.
Ogawa K.
Yano M.
Takemura Y.
Ju-ichi M.
Ito C.
Furukawa H.
J.
Nat. Prod.
1999,
62:
587
<A NAME="RD20910ST-6B">6b</A>
Belmont P.
Bosson J.
Godet T.
Tiano M.
Anti-Cancer Agents Med. Chem.
2007,
7:
139
<A NAME="RD20910ST-7">7</A>
Zarubaev VV.
Slita AV.
Krivitskaya VZ.
Sirotkin AK.
Kovalenko AL.
Chatterjee NK.
Antiviral
Res.
2003,
58:
131
<A NAME="RD20910ST-8">8</A>
Fujiwara M.
Okamoto M.
Watanabe M.
Machida H.
Shigeta S.
Konno K.
Yokota T.
Baba M.
Antiviral Res.
1999,
43:
179
<A NAME="RD20910ST-9">9</A>
Goodell JR.
Puig-Basagoiti F.
Forshey BM.
Shi PY.
Ferguson DM.
J. Med. Chem.
2006,
49:
2127
<A NAME="RD20910ST-10">10</A>
Goodell JR.
Madhok AA.
Hiasa H.
Ferguson DM.
Bioorg. Med. Chem.
2006,
14:
5467
<A NAME="RD20910ST-11">11</A>
Tabarrini O.
Manfroni G.
Fravolini A.
Cecchetti V.
Sabatini S.
De Clercq E.
Rozensky J.
Canard B.
Dutartre H.
Paeshuyse J.
Neyts J.
J.
Med. Chem.
2006,
49:
2621
<A NAME="RD20910ST-12A">12a</A>
Akanitapichat P.
Lowden CT.
Bastow KF.
Antiviral Res.
2000,
45:
123
<A NAME="RD20910ST-12B">12b</A>
Akanitapichat P.
Bastow KF.
Antiviral
Res.
2002,
53:
113
<A NAME="RD20910ST-13">13</A>
Bastow KF.
Curr.
Drug Targets: Infect. Disord.
2004,
4:
323
<A NAME="RD20910ST-14">14</A>
Bernardino AMR.
Castro HC.
Frugulhetti ICPP.
Loureiro NIV.
Azevedo AR.
Pinheiro LCS.
Souza TML.
Giongo V.
Passamani F.
Magalhães UO.
Albuquerque MG.
Cabral LM.
Rodrigues CR.
Bioorg. Med. Chem.
2008,
16:
313
<A NAME="RD20910ST-15A">15a</A>
Lowden CT.
Bastow KF.
Antiviral Res.
2003,
59:
143
<A NAME="RD20910ST-15B">15b</A>
Lowden CT.
Bastow KF.
J.
Med. Chem.
2003,
46:
5015
<A NAME="RD20910ST-16">16</A>
Stankiewicz-Drogon A.
Palchykovska LG.
Kostina
VG.
Alexeeva IV.
Shved AD.
Boguszewska-Chachulska AM.
Bioorg. Med. Chem.
2008,
16:
8846
<A NAME="RD20910ST-17">17</A>
Basco LK.
Mitaku S.
Skaltsounis A.-L.
Ravelomanantsoa N.
Tillequin F.
Koch M.
Les Bras J.
Antimicrob.
Agents Chemother.
1994,
38:
1169
<A NAME="RD20910ST-18">18</A>
Smith JA.
West RW.
Allen M.
J.
Fluoresc.
2004,
14:
151
<A NAME="RD20910ST-19">19</A>
Saito Y.
Hanawa K.
Bag SS.
Motegi K.
Saito I.
Nucleic
Acids Symp. Ser.
2006,
50:
181
<A NAME="RD20910ST-20">20</A>
Smilkstein M.
Sriwilaijaroen N.
Kelly JX.
Wilairat P.
Riscoe M.
Antimicrob.
Agents Chemother.
2004,
48:
1803
<A NAME="RD20910ST-21">21</A>
Dadabhoy A.
Faulkner S.
Sammes PG.
J.
Chem. Soc., Perkin Trans. 2
2002,
2:
348
<A NAME="RD20910ST-22">22</A>
Nikolov P.
Petkova I.
Köhler G.
Stojanov S.
J. Mol. Struct.
1998,
448:
247
<A NAME="RD20910ST-23">23</A>
Lunardi CN.
Tedesco AC.
Kurth TL.
Brinn IM.
Photochem.
Photobiol. Sci.
2003,
2:
954
<A NAME="RD20910ST-24">24</A>
González-Blanco C.
Velázquez MM.
Costa AMB.
Barreleiro P.
J. Colloid Interface Sci.
1997,
189:
43
<A NAME="RD20910ST-25">25</A>
Bretonniere Y.
Cann MJ.
Parker D.
Slater R.
Org. Biomol. Chem.
2004,
2:
1624
<A NAME="RD20910ST-26">26</A>
Wang B.
Bouffier L.
Demeunynck M.
Mailley P.
Roget A.
Livache T.
Dumy P.
Bioelectrochemistry
2004,
63:
233
<A NAME="RD20910ST-27">27</A>
Ferreira ME.
de Arias AR.
Yaluff G.
Bilbao NV.
Nakayama H.
Torres S.
Schinini A.
Guy I.
Heinzen H.
Fournet A.
Phytomedicine
2010,
17:
375
<A NAME="RD20910ST-28">28</A>
Mekouar K.
Mouscadet J.-F.
Desmaele D.
Subra F.
Leh H.
Savouré D.
Auclair C.
d’Angelo J.
J. Med. Chem.
1998,
41:
2846
<A NAME="RD20910ST-29">29</A>
Franck X.
Fournet A.
Prina E.
Mahieux R.
Hocquemiller R.
Figadere B.
Bioorg. Med. Chem.
2004,
14:
3635
<A NAME="RD20910ST-30">30</A>
Mesa VAM.
Molano MPA.
Seon B.
Figadere B.
Robledo SM.
Muñoz DL.
Sáez VJA.
Vitae
2008,
15:
259 ; and references cited therein
<A NAME="RD20910ST-31">31</A>
Delmas F.
Avellaneda A.
Di Giogio C.
Robin M.
De Clercq E.
Timon-David P.
Galy JJ.
Eur.
J. Med. Chem.
2004,
685
<A NAME="RD20910ST-32">32</A>
Nakamura S.
Kozuka M.
Bastow KF.
Tokuda H.
Nishino H.
Suzuki M.
Tatsuzaki J.
Natschke SLM.
Kuo S.-C.
Lee K.-H.
Bioorg.
Med. Chem.
2005,
13:
4396
<A NAME="RD20910ST-33">33</A>
Nishio R.
Wessely S.
Sugiura M.
Kobayashi S.
J. Comb. Chem.
2006,
8:
459
<A NAME="RD20910ST-34">34</A>
Mai HDT.
Gaslonde T.
Michael S.
Tillequin F.
Koch M.
Bongui J.-B.
Elomri A.
Seguin E.
Pfeiffer B.
Renard P.
David-Cordonnier M.-H.
Laine W.
Bailly C.
Kraus-Berthier L.
Léonce S.
Hickman JA.
Pierré A.
J. Med. Chem.
2003,
46:
3072
<A NAME="RD20910ST-35A">35a</A>
Costes N.
Le Deit H.
Michael S.
Tillequim F.
Koch M.
Pfeiffer B.
Renard P.
Léonce S.
Guilbaud N.
Kraus-Berthier L.
Pierré A.
Atassi G.
J.
Med. Chem.
2000,
43:
2395
<A NAME="RD20910ST-35B">35b</A>
Michael S.
Gaslonde T.
Tillequin F.
Eur.
J. Med. Chem.
2004,
39:
649
<A NAME="RD20910ST-36A">36a</A>
Rudas M.
Nyerges M.
Toke L.
Pete B.
Groundwater PW.
Tetrahedron Lett.
1999,
40:
7003
<A NAME="RD20910ST-36B">36b</A>
Zhao J.
Larock RC.
J. Org. Chem.
2007,
72:
583
<A NAME="RD20910ST-37">37</A>
MacNeil SL.
Wilson BJ.
Snieckus V.
Org.
Lett.
2006,
8:
1133
<A NAME="RD20910ST-38A">38a</A>
Bhoga U.
Mali RS.
Adapa SR.
Tetrahedron Lett.
2004,
45:
9483
<A NAME="RD20910ST-38B">38b</A>
Venkataraman S.
Barange DK.
Pal M.
Tetrahedron
Lett.
2006,
47:
7317 ;
and references cited therein
<A NAME="RD20910ST-39">39</A>
Barluenga J.
Mendoza A.
Rodríguez F.
Fañanás FJ.
Chem.
Eur. J.
2008,
14:
10892
<A NAME="RD20910ST-40">40</A>
Wall VM.
Eisenstadt A.
Ager DJ.
Laneman SA.
Platinum Metals Rev.
1999,
43:
138
<A NAME="RD20910ST-41">41</A>
Optimized Experimental
Procedure for the Synthesis of (
E
)-3-Iodo-2-styrylquinolin-4(1
H
)-ones 2a-c
Na2CO3 (0.064
g, 0.61 mmol) and I2 (0.15 g, 0.61 mmol) were added to
a solution of the appropriate (E)-2-styryl-quinolin-4(1H)-one 1a-c (0.40 mmol) in anhyd THF (25 mL). The
mixture was stirred, protected from the daylight (to avoid the E/Z isomerisation),
at r.t. until complete consumption of the starting material (4-5
h) and then poured into an aq sat. solution of Na2S2O3.
The solid obtained was filtered, washed with H2O and
crystallised from EtOH. (E)-3-Iodo-2-styrylquinolin-4(1H)-ones 2a-c were obtained as yellow solids (2a, 211.7 mg, 93%; 2b,
201.7 mg, 82%; 2c, 236.2 mg, 95%).
<A NAME="RD20910ST-42">42</A>
Analytical Data
for (
E
)-3-Iodo-2-styrylquinolin-4(1
H
)-one (2a)
Mp
194-197 ˚C. ¹H NMR (300.13
MHz, DMSO-d
6): δ = 7.39
(ddd, 1 H, J = 8.0,
6.8, 1.2 Hz, H-6), 7.43 (d, 1 H, J = 16.4
Hz, H-α), 7.45-7.57 (m, 3 H, H-3′,4′,5′),
7.55 (d, 1 H, J = 16.4
Hz, H-β), 7.70-7.76 (m, 3 H, H-7, H-2′,6′),
7.80 (d, 1 H, J = 8.4
Hz, H-8), 8.11 (dd, 1 H, J = 8.0,
1.2 Hz, H-5), 11.97 (s, 1 H, NH) ppm. ¹³C
NMR (75.47 MHz, DMSO-d
6): δ = 87.5
(C-3), 118.3 (C-8), 120.8 (C-10), 124.0 (C-6), 125.5 (C-5), 126.4
(C-α), 127.4 (C-2′,6′), 129.2 (C-3′,5′), 129.7
(C-4′), 132.3 (C-7), 135.0 (C-1′), 137.1 (C-β),
139.4 (C-9), 147.6 (C-2), 173.4 (C-4) ppm. MS (ESI+): m/z (%) = 374
(100) [M + H]+, 396
(12) [M + Na]+, 769
(3) [2 M + Na]+.
Anal. Calcd (%) for C17H12INO (373.19):
C, 54.71; H, 3.24; N, 3.75. Found: C, 55.10; H, 3.17; N, 3.77.
<A NAME="RD20910ST-43A">43a</A>
Plisson C.
Chenault J.
Heterocycles
1999,
51:
2627
<A NAME="RD20910ST-43B">43b</A>
Mphalele MJ.
Nwamadi MS.
Mabeta P.
J. Heterocycl. Chem.
2006,
43:
255
<A NAME="RD20910ST-43C">43c</A>
Almeida AIS.
Silva AMS.
Cavaleiro JAS.
Synlett
2010,
462
<A NAME="RD20910ST-44">44</A>
Optimized Experimental
Procedure for the Heck Reaction of (
E
)-3-Iodo-2-styrylquinolin-4(1
H
)-one 2a-c with
Styrene: Synthesis of (
E
,
E
)-2,3-distyrylquinolin-4(1
H
)-ones 4a-c
Styrene
(138.8 µL, 1.6 mmol) was added to a mixture of the appropriate
(E)-3-iodo-2-styrylquinolin-4(1H)-one 2a-c (0.24 mmol), tetrakis(triphenylphosphine)palladium(0) (13.94
mg, 1.2 ¥ 10-² mmol), and
Et3N (33.4 µl, 0.24 mmol) in MeCN (6 mL). The
mixture was heated at reflux until consumption of the starting material,
which was confirmed by TLC (Table
[¹]
).
The mixture was then poured into H2O, extracted with
CHCl3, and dried over anhyd Na2SO4.
The solvent was evaporated and the residue dissolved in CH2Cl2 and
purified by TLC using a mixture of EtOAc-light PE (3:2)
as eluent. The (E,E)-2,3-distyrylquinolin-4(1H)-ones 4a-c were obtained as yellow solids in good
yields (4a, 52.2 mg, 62%; 4b, 55.0 mg, 65%; 4c,
49.3 mg, 58%).
<A NAME="RD20910ST-45">45</A>
Analytical Data
of (
E,E
)-2,3-Distyrylquinolin-4(1
H
)-one (4a)
Mp
207-208 ˚C. ¹H NMR (500.13
MHz, DMSO-d
6): δ = 7.24
(t, 1 H, J = 7.6
Hz, H-4′′), 7.32-7.39 (m, 5 H, H-6, H-8,
H-2′,6′, H-α′), 7.41 (t, 1 H, J = 7.5 Hz,
H-4′), 7.48 (t, 2 H, J = 7.5
Hz, H-3′,5′), 7.52 (d, 1 H, J = 16.4
Hz, H-β), 7.56 (d, 2 H, J = 7.6
Hz, H-2′′,6′′), 7.67 (dt, 1
H, J = 8.0,
1.2 Hz, H-7), 7.70 (d, 1 H, J = 16.4
Hz, H-α), 7.78 (t, 2 H, J = 7.6 Hz,
H-3′′,5′′), 7.85 (d, 1 H, J = 16.0 Hz,
H-β′), 8.17 (dd, 1 H, J = 8.1,
1.2 Hz, H-5), 11.69 (br s, NH) ppm. ¹³C
NMR (125.77 MHz, DMSO-d
6): δ = 115.4
(C-3), 118.6 (C-8), 121.3 (C-α), 122.4 (C-10), 123.1 (C-α′),
124.4 (C-6), 125.2 (C-5), 126.1 (C-2′′,6′′),
127.0 (C-4′′), 127.5 (C-3′′,5′′),
128.7 (C-3′,5′), 129.0 (C-2′,6′),
129.2 (C-4′), 131.0 (C-β′), 131.6 (C-7),
135.7 (C-β,1′), 136.4 (C-1′′),
138.6 (C-9), 145.5 (C-2), 175.9 (C-4). MS (ESI+): m/z (%) = 350
(100) [M + H]+. HRMS
(ESI+): m/z calcd
for [C25H20NO + H]+:
350.15394; found: 350.15345.
<A NAME="RD20910ST-46">46</A>
Optimized Experimental
Procedure for the Synthesis of 2,3-Diarylacridin-9(10
H
)-ones 5a-c
and (
E
)-2-phenyl-4-styrylfuro[3,2-
c
]quinolines
7a-c
Iodine (1.82 mg, 7.15 ¥ 10-³ mmol)
and PTSA (1.36 mg, 7.15 ¥ 10-² mmol)
were added to a solution of the appropriate (E,E)-2,3-distyrylquinolin-4(1H)-one 4a-c (7.15 ¥ 10-² mmol) in 1,2,4-trichlorobenzene (3 mL), and the
mixture was refluxed (see Table
[²]
for
reaction time). After cooling the reaction mixture was purified
by column chromatography using light PE as eluent to remove the 1,2,4-trichlorobenzene.
Then, the mixture was removed from the column using CH2Cl2 as
eluent and was purified by TLC using a mixture of EtOAc-light
PE (3:2) as eluent. Two main compounds were isolated in each case:
That with the lower R
f
value corresponded to the 2,3-diarylacridin-9(10H)-ones 5a-c which were isolated as yellow compounds
in moderate yields (5a, 9.4 mg, 38%; 5b, 8.7 mg, 35%; 5c,
9.9 mg, 40%); and that with higher R
f
value corresponded to (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines 7a-c obtained as yellow compounds also in
moderate yields (7a, 10.2 mg, 41%; 7b, 10.9 mg, 44%; 7c,
13.9 mg, 56%).
<A NAME="RD20910ST-47">47</A>
Analytical Data
of 2,3-Diphenylacridin-9(10
H
)-one (5a)
Mp 283-284 ˚C. ¹H
NMR (300.13 MHz, DMSO-d
6): δ = 7.15-7.17
(m, 2 H, H-2′,6′), 7.21-7.32 (m, 9 H,
H-3′,4′,5′, H-2′′,3′′,4′′,5′′,6′′,
H-7), 7.55 (s, 1 H, H-4), 7.58 (d, 1 H, J = 8.0
Hz, H-5), 7.77 (ddd, 1 H, J = 8.0,
7.0, 1.1 Hz, H-6), 8.20 (s, 1 H, H-1), 8.26 (dd, 1 H, J = 8.0, 1.1
Hz, H-8), 11.92 (s, 1 H, NH) ppm. ¹³C
NMR (125.77 MHz, DMSO-d
6): δ = 117.5
(C-5), 118.9 (C-4), 119.6 (C-9a), 120.7 (C-7), 121.3 (C-8a), 126.1
(C-4′), 126.6 (C-8), 127.5 (C-4′′), 127.6 (C-1),
128.1 (C-3′′,5′′), 128.2 (C-3′,5′),
129.3 (C-2′,6′), 129.6 (C-2′′,6′′),
133.5 (C-2), 133.6 (C-6), 140.1 and 140.2 (C-1′ and C-1′′),
140.4 (C-4a), 141.0 (C-4b), 145.4 (C-3), 176.5 (C-9). HRMS (ESI+): m/z calcd for [C25H18NO + H]+: 348.1383;
found: 348.1384.
<A NAME="RD20910ST-48">48</A>
Analytical Data
of (
E
)-2-Phenyl-4-styrylfuro[3,2-
c
]quinoline
(7a)
Mp 154-156 ˚C. ¹H
NMR (300.13 MHz, DMSO-d
6): δ = 7.41
(t, 1 H, J = 7.0
Hz, H-4′′), 7.48-7.55 (m, 1 H, H-4′), 7.53
(t, 1 H, J = 7.0
Hz, H-3′′,5′′), 7.61 (t, 2 H, J = 7.6 Hz, H-3′,5′),
7.70 (dd, 1 H, J = 7.7,
7.4 Hz, H-8), 7.78 (ddd, 1 H, J = 8.0,
7.7, 1.3 Hz, H-7), 7.89 (d, 1 H, J = 17.4
Hz, H-α), 7.91 (d, 2 H, J = 7.0
Hz, H-2′′,6′′), 8.08 (d, 1 H, J = 17.4 Hz, H-β),
8.11 (d, 2 H, J = 7.6
Hz, H-2′,6′), 8.15 (d, 1 H, J = 8.0 Hz,
H-6), 8.25 (s, 1 H, H-3), 8.39 (dd, 1 H, J = 7.4,
1.3 Hz, H-9) ppm. ¹³C NMR (125.77 MHz,
DMSO-d
6): δ = 101.6 (C-3),
115.7 (C-9a), 119.8 (C-9), 120.9 (C-3a), 124.7 (C-2′,6′),
125.4 (C-α), 126.8 (C-8), 127.6 (C-2′′,6′′),
128.9, 129.06 and 129.12 (C-3′′,4′′,5′′,
C-1′, C-4′, C-7), 129.26 (C-3′,5′),
129.32 (C-6), 135.2 (C-β), 136.2 (C-1′′),
145.0 (C-5a), 150.0 (C-4), 154.9 (C-2), 155.7 (C-9b) ppm. HRMS (ESI+): m/z calcd for [C25H18NO + H]+:
348.1383; found: 348.1378.
<A NAME="RD20910ST-49A">49a</A>
Wyman GM.
Chem. Rev.
1955,
55:
625
<A NAME="RD20910ST-49B">49b</A>
Yamashita S.
Bull.
Chem. Soc. Jpn.
1961,
34:
487