References and Notes
1a
Larsen RD.
Corley EG.
King AO.
Carrol JD.
Davis P.
Verhoeven TR.
Reider PJ.
Labelle M.
Gauthier JY.
Xiang YB.
Zamboni RJ.
J. Org. Chem.
1996,
61:
3398
1b
Chen YL.
Fang KC.
Sheu J.-Y.
Hsu S.-L.
Tzeng C.-C.
J. Med. Chem.
2001,
44:
2374
1c
Roma G.
Braccio MD.
Grossi G.
Mattioli F.
Ghia M.
Eur.
J. Med. Chem.
2000,
35:
1021
2
Dubé D.
Blouin M.
Brideau C.
Chan C.-C.
Desmarais S.
Ethier D.
Falgueyret J.-P.
Friesen RW.
Girard M.
Girard Y.
Guay J.
Riendeau D.
Tagari P.
Young RN.
Bioorg. Med. Chem. Lett.
1998,
8:
1255
3
Maguire MP.
Sheets KR.
McVety K.
Spada AP.
Zilberstein A.
J.
Med. Chem.
1994,
37:
2129
4a
Zhang X.
Shetty AS.
Jenekhe SA.
Macromolecules
1999,
32:
7422
4b
Zhang X.
Jenekhe SA.
Macromolecules
2000,
33:
2069
4c
Jenekhe SA.
Lu L.
Alam MM.
Macromolecules
2001,
34:
7315
5a
Cho CS.
Oh BH.
Kim T.-J.
Shim SC.
Chem. Commun.
2000,
1885
5b
Jiang B.
Si Y.-G.
J. Org. Chem.
2002,
67:
9449
6a
Skraup ZH.
Ber. Dtsch. Chem.
Ges.
1880,
13:
2086
6b
Friedländer P.
Ber. Dtsch. Chem. Ges.
1882,
15:
2572
6c
Manske RHF.
Kulka M.
Org.
React.
1953,
7:
59
6d
Linderman RJ.
Kirollos SK.
Tetrahedron
Lett.
1990,
31:
2689
6e
Theoclitou M.-E.
Robinson LA.
Tetrahedron Lett.
2002,
43:
3907
7a
Cheng C.-C.
Yan S.-J.
Org.
React.
1982,
28:
37
7b
Thummel RP.
Synlett
1992,
1
7c
Eckert H.
Angew. Chem.,
Int. Ed. Engl.
1981,
20:
208
7d
Gladiali S.
Chelucci G.
Mudadu MS.
Gastaut MA.
Thummel
RP.
J. Org. Chem.
2001,
66:
400
8
Fehnel EA.
J.
Heterocycl. Chem.
1966,
31:
2899
9a
Strekowski L.
Czamy A.
J.
Fluorine Chem.
2000,
104:
281
9b
Hu Y.-Z.
Zang G.
Thummel RP.
Org.
Lett.
2003,
5:
2251
9c
Jia C.-S.
Zhang Z.
Tu S.-J.
Wang
G.-W.
Org. Biomol. Chem.
2006,
4:
104
10a
McNaughton BR.
Miller BL.
Org. Lett.
2003,
5:
4257
10b
Yadav JS.
Reddy BVS.
Sreedhar P.
Rao
RS.
Nagaiah K.
Synthesis
2004,
2381
10c
Arcadi A.
Chiarini M.
Di Giuseppe S.
Marinelli F.
Synlett
2003,
203
10d
Palimkar SS.
Siddiqui SA.
Daniel T.
Lahoti RJ.
Srinivasan KV.
J. Org. Chem.
2003,
68:
9371
10e
Wu J.
Xia H.-G.
Gao K.
Org.
Biomol. Chem.
2006,
4:
126
10f
Varala R.
Enugala R.
Adapa SR.
Synthesis
2006,
3825
11a
Chakravarti R.
Kalita P.
Selvan ST.
Oveisi H.
Balasubramanian VV.
Kantam ML.
Vinu A.
Green Chem.
2010,
12:
49
11b
Shobha D.
Chari MA.
Mano A.
Selvan ST.
Mukkanti K.
Vinu A.
Tetrahedron
2009,
65:
10608
11c
Vinu A.
Kalita P.
Balasubramanian VV.
Oveisi H.
Selvan ST.
Mano A.
Chari MA.
Reddy
BVS.
Tetrahedron Lett.
2009,
50:
7132
11d
Chari MA.
Karthikeyan G.
Pandurangan A.
Naidu TS.
Sathyaseelan B.
Zaidi SMJ.
Vinu A.
Tetrahedron Lett.
2010,
51:
2629
12
General Procedure
A
mixture of 2-aminoaryl ketone (1.0 mmol), α-methylene ketone
(1.0 mmol), and AlKIT-5 (50 mg) in EtOH (5 mL) was stirred at 80 ˚C
for the specified time (see Table
[¹]
).
After completion of the reaction, as monitored by TLC, the catalyst
was separated by filtration, and the residue was washed with EtOH
(10 mL). The combined organic layers were concentrated under reduced
pressure, and the crude product was purified by silica gel column
chromatography using EtOAc-n-hexane
(1:9) as eluent to afford the pure quinoline derivative.
Spectral Data for Selected Products
Ethyl 2-Methyl-4-phenylquinoline-3-carboxylate
(3a)
Solid, mp 98 ˚C. IR (KBr): ν = 3030,
2960, 1700, 1605, 1568, 1482, 905 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 0.95 (t, J = 7.0 Hz,
3 H), 2.80 (s, 3 H), 4.05 (q, J = 7.0
Hz, 2 H), 7.35-7.50 (m, 6 H), 7.55 (d, J = 8.1
Hz, 1 H), 7.70 (t, J = 7.9 Hz,
1 H), 8.05 (d, J = 8.1
Hz, 1 H). MS (EI): m/z = 291 [M]+, 85,
263, 246, 218, 176, 150.
3-Acetyl-2-methyl-4-phenylquinoline
(3d)
Solid, mp 115 ˚C. IR (KBr): ν = 3027,
2960, 1705, 1610, 1569, 1485, 705 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.95 (s,
3 H), 2.60 (s, 3 H), 7.25-7.30 (m, 2 H), 7.35 (t, J = 8.0 Hz, 1
H), 7.40-7.50 (m, 3 H), 7.55 (d, J = 8.2
Hz, 1 H), 7.65 (t, J = 8.0
Hz, 1 H), 8.00 (d, J = 8.2
Hz, 1 H). MS (EI): m/z = 261 [M]+,
246, 218, 176, 150, 43.
9-Phenyl-1,2,3,4-tetrahydroacridine
(3e)
Solid, mp 137 ˚C. IR (KBr): ν = 3057,
2945, 1609, 1575, 1480, 1210, 708 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.75-1.85
(m, 2 H), 1.95-2.05 (m, 2 H), 2.60 (t, J = 6.7
Hz, 2 H), 3.20 (t, J = 6.9
Hz, 2 H), 7.20-7.32 (m, 3 H), 7.40-7.60 (m, 5
H), 8.00 (d, J = 8.2
Hz, 1 H). MS (EI): m/z = 259 [M]+, 230,
182, 176, 57.
13
Syntheses of AlKIT-5
Catalyst with Different n
Si
/n
Al
Ratio
The AlKIT-5 materials with
different nSi/nAl ratios were synthesized
using Pluronic F127 as the template in an acidic medium. In a typical
synthesis, 5.0 g of F127 was dissolved in 3 g of HCl (35 wt%)
and 240 g of distilled H2O. To this mixture, 24.0 g of
TEOS and the required amount of the aluminium isopropoxide were
added, and the resulting mixture was stirred for 24 h at 45 ˚C.
Subsequently, the reaction mixture was heated for 24 h at 100 ˚C
under static conditions for hydrothermal treatment. After hydrothermal treatment,
the final solid product was filtered off and then dried at 100 ˚C
without washing. The product was calcined at 540 ˚C
for 10 h. The samples are denoted as AlKIT-5 (x)where x denotes
the nSi/nAl ratio in the final product.
The
molar gel composition of the reaction mixture was
SiO2/Al2O3/F127/HCl/H2O = 1.0:0.041-0.071:0.0035:0.25:116.6.